scispace - formally typeset
Search or ask a question
Institution

Stockholm University

EducationStockholm, Sweden
About: Stockholm University is a education organization based out in Stockholm, Sweden. It is known for research contribution in the topics: Population & Context (language use). The organization has 21052 authors who have published 62567 publications receiving 2725859 citations. The organization is also known as: University of Stockholm & Stockholms universitet.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the ARGUS detector at the DORIS II storage ring has been used in three different ways for B0-B 0 mixing in ϒ (4S) decays.

459 citations

Journal ArticleDOI
TL;DR: In the world of membrane proteins, topology defines an important halfway house between the amino-acid sequence and the fully folded three-dimensional structure.
Abstract: In the world of membrane proteins, topology defines an important halfway house between the amino-acid sequence and the fully folded three-dimensional structure. Although the concept of membrane-protein topology dates back at least 30 years, recent advances in the field of translocon-mediated membrane-protein assembly, proteome-wide studies of membrane-protein topology and an exponentially growing number of high-resolution membrane-protein structures have given us a deeper understanding of how topology is determined and of how it evolves.

458 citations

Journal ArticleDOI
TL;DR: In this paper, the authors apply evolutionary game theory to investigate how variation in resource value influences the evolution of fighting behavior, and make predictions for fight duration, cost, and probability of victory.

458 citations

Journal ArticleDOI
TL;DR: Lumenal proteins with a typical twin-arginine translocation motif were predicted with good accuracy and sensitivity and included additional isomerases and proteases, suggesting prime functions of the lumenal proteome include assistance in the folding and proteolysis of thylakoid proteins as well as protection against oxidative stress.
Abstract: Experimental proteome analysis was combined with a genome-wide prediction screen to characterize the protein content of the thylakoid lumen of Arabidopsis chloroplasts. Soluble thylakoid proteins were separated by two-dimensional electrophoresis and identified by mass spectrometry. The identities of 81 proteins were established, and N termini were sequenced to validate localization prediction. Gene annotation of the identified proteins was corrected by experimental data, and an interesting case of alternative splicing was discovered. Expression of a surprising number of paralogs was detected. Expression of five isomerases of different classes suggests strong (un)folding activity in the thylakoid lumen. These isomerases possibly are connected to a network of peripheral and lumenal proteins involved in antioxidative response, including peroxiredoxins, m-type thioredoxins, and a lumenal ascorbate peroxidase. Characteristics of the experimentally identified lumenal proteins and their orthologs were used for a genome-wide prediction of the lumenal proteome. Lumenal proteins with a typical twin-arginine translocation motif were predicted with good accuracy and sensitivity and included additional isomerases and proteases. Thus, prime functions of the lumenal proteome include assistance in the folding and proteolysis of thylakoid proteins as well as protection against oxidative stress. Many of the predicted lumenal proteins must be present at concentrations at least 10,000-fold lower than proteins of the photosynthetic apparatus.

457 citations

Journal ArticleDOI
M. G. Aartsen1, Markus Ackermann, Jenni Adams2, Juanan Aguilar3  +355 moreInstitutions (48)
TL;DR: The design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and the methodology for drilling and deployment are described, including the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis.
Abstract: The IceCube Neutrino Observatory is a cubic-kilometer-scale high-energy neutrino detector built into the ice at the South Pole. Construction of IceCube, the largest neutrino detector built to date, was completed in 2011 and enabled the discovery of high-energy astrophysical neutrinos. We describe here the design, production, and calibration of the IceCube digital optical module (DOM), the cable systems, computing hardware, and our methodology for drilling and deployment. We also describe the online triggering and data filtering systems that select candidate neutrino and cosmic ray events for analysis. Due to a rigorous pre-deployment protocol, 98.4% of the DOMs in the deep ice are operating and collecting data. IceCube routinely achieves a detector uptime of 99% by emphasizing software stability and monitoring. Detector operations have been stable since construction was completed, and the detector is expected to operate at least until the end of the next decade.

457 citations


Authors

Showing all 21326 results

NameH-indexPapersCitations
Hongjie Dai197570182579
Hyun-Chul Kim1764076183227
Richard S. Ellis169882136011
Stanley B. Prusiner16874597528
Anders Björklund16576984268
Yang Yang1642704144071
Tomas Hökfelt158103395979
Bengt Winblad1531240101064
Zhenwei Yang150956109344
Marvin Johnson1491827119520
Jan-Åke Gustafsson147105898804
Markus Ackermann14661071071
Hans-Olov Adami14590883473
Markku Kulmala142148785179
Kjell Fuxe142147989846
Network Information
Related Institutions (5)
University of Copenhagen
149.7K papers, 5.9M citations

91% related

University of Amsterdam
140.8K papers, 5.9M citations

90% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

90% related

University of Oxford
258.1K papers, 12.9M citations

90% related

Utrecht University
139.3K papers, 6.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023158
2022537
20213,664
20203,602
20193,347
20183,092