scispace - formally typeset
Search or ask a question
Institution

Stockholm University

EducationStockholm, Sweden
About: Stockholm University is a education organization based out in Stockholm, Sweden. It is known for research contribution in the topics: Population & Supernova. The organization has 21052 authors who have published 62567 publications receiving 2725859 citations. The organization is also known as: University of Stockholm & Stockholms universitet.


Papers
More filters
Journal ArticleDOI
TL;DR: The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of UNEP or WHO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.

1,192 citations

Journal ArticleDOI
TL;DR: This review summarises current knowledge about production volumes, physico-chemical properties, analysis, environmental occurrence, fate and behaviour and human exposure to the "novel" brominated flame retardants (NBFRs).

1,186 citations

Journal ArticleDOI
TL;DR: A common representation is offered that frames cultural services, along with all ES, by the relative contribution of relevant ecological structures and functions and by applicable social evaluation approaches, which provides a foundation for merging ecological and social science epistemologies to define and integrate cultural services better within the broader ES framework.
Abstract: Cultural ecosystem services (ES) are consistently recognized but not yet adequately defined or integrated within the ES framework. A substantial body of models, methods, and data relevant to cultural services has been developed within the social and behavioral sciences before and outside of the ES approach. A selective review of work in landscape aesthetics, cultural heritage, outdoor recreation, and spiritual significance demonstrates opportunities for operationally defining cultural services in terms of socioecological models, consistent with the larger set of ES. Such models explicitly link ecological structures and functions with cultural values and benefits, facilitating communication between scientists and stakeholders and enabling economic, multicriterion, deliberative evaluation and other methods that can clarify tradeoffs and synergies involving cultural ES. Based on this approach, a common representation is offered that frames cultural services, along with all ES, by the relative contribution of relevant ecological structures and functions and by applicable social evaluation approaches. This perspective provides a foundation for merging ecological and social science epistemologies to define and integrate cultural services better within the broader ES framework.

1,184 citations

Journal ArticleDOI
M. G. Aartsen1, Markus Ackermann, Jenni Adams2, Juanan Aguilar3  +299 moreInstitutions (41)
TL;DR: Results from an analysis with a third year of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm-2 s-1 sr-1 per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7σ.
Abstract: A search for high-energy neutrinos interacting within the IceCube detector between 2010 and 2012 provided the first evidence for a high-energy neutrino flux of extraterrestrial origin. Results from an analysis using the same methods with a third year (2012-2013) of data from the complete IceCube detector are consistent with the previously reported astrophysical flux in the 100 TeV-PeV range at the level of 10(-8) GeV cm(-2) s(-1) sr(-1) per flavor and reject a purely atmospheric explanation for the combined three-year data at 5.7 sigma. The data are consistent with expectations for equal fluxes of all three neutrino flavors and with isotropic arrival directions, suggesting either numerous or spatially extended sources. The three-year data set, with a live time of 988 days, contains a total of 37 neutrino candidate events with deposited energies ranging from 30 to 2000 TeV. The 2000-TeV event is the highest-energy neutrino interaction ever observed.

1,183 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented revised estimates of permafrost organic carbon stocks, including quantitative uncertainty estimates, in the 0-3 m depth range in soils as well as for sediments deeper than 3 m in deltaic deposits of major rivers and in the Yedoma region of Siberia and Alaska.
Abstract: Soils and other unconsolidated deposits in the northern circumpolar permafrost region store large amounts of soil organic carbon (SOC). This SOC is potentially vulnerable to remobilization following soil warming and permafrost thaw, but SOC stock estimates were poorly constrained and quantitative error estimates were lacking. This study presents revised estimates of permafrost SOC stocks, including quantitative uncertainty estimates, in the 0–3 m depth range in soils as well as for sediments deeper than 3 m in deltaic deposits of major rivers and in the Yedoma region of Siberia and Alaska. Revised estimates are based on significantly larger databases compared to previous studies. Despite this there is evidence of significant remaining regional data gaps. Estimates remain particularly poorly constrained for soils in the High Arctic region and physiographic regions with thin sedimentary overburden (mountains, highlands and plateaus) as well as for deposits below 3 m depth in deltas and the Yedoma region. While some components of the revised SOC stocks are similar in magnitude to those previously reported for this region, there are substantial differences in other components, including the fraction of perennially frozen SOC. Upscaled based on regional soil maps, estimated permafrost region SOC stocks are 217 ± 12 and 472 ± 27 Pg for the 0–0.3 and 0–1 m soil depths, respectively (±95% confidence intervals). Storage of SOC in 0–3 m of soils is estimated to 1035 ± 150 Pg. Of this, 34 ± 16 Pg C is stored in poorly developed soils of the High Arctic. Based on generalized calculations, storage of SOC below 3 m of surface soils in deltaic alluvium of major Arctic rivers is estimated as 91 ± 52 Pg. In the Yedoma region, estimated SOC stocks below 3 m depth are 181 ± 54 Pg, of which 74 ± 20 Pg is stored in intact Yedoma (late Pleistocene ice- and organic-rich silty sediments) with the remainder in refrozen thermokarst deposits. Total estimated SOC storage for the permafrost region is ∼1300 Pg with an uncertainty range of ∼1100 to 1500 Pg. Of this, ∼500 Pg is in non-permafrost soils, seasonally thawed in the active layer or in deeper taliks, while ∼800 Pg is perennially frozen. This represents a substantial ∼300 Pg lowering of the estimated perennially frozen SOC stock compared to previous estimates.

1,168 citations


Authors

Showing all 21326 results

NameH-indexPapersCitations
Hongjie Dai197570182579
Hyun-Chul Kim1764076183227
Richard S. Ellis169882136011
Stanley B. Prusiner16874597528
Anders Björklund16576984268
Yang Yang1642704144071
Tomas Hökfelt158103395979
Bengt Winblad1531240101064
Zhenwei Yang150956109344
Marvin Johnson1491827119520
Jan-Åke Gustafsson147105898804
Markus Ackermann14661071071
Hans-Olov Adami14590883473
Markku Kulmala142148785179
Kjell Fuxe142147989846
Network Information
Related Institutions (5)
University of Copenhagen
149.7K papers, 5.9M citations

91% related

University of Amsterdam
140.8K papers, 5.9M citations

90% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

90% related

University of Oxford
258.1K papers, 12.9M citations

90% related

Utrecht University
139.3K papers, 6.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023158
2022537
20213,664
20203,602
20193,347
20183,092