scispace - formally typeset
Search or ask a question
Institution

Stockholm University

EducationStockholm, Sweden
About: Stockholm University is a education organization based out in Stockholm, Sweden. It is known for research contribution in the topics: Population & Supernova. The organization has 21052 authors who have published 62567 publications receiving 2725859 citations. The organization is also known as: University of Stockholm & Stockholms universitet.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors studied the role of biogeochemical sources and rates of nitrogen fixation in the world's oceans, the major controls on rates of oceanic nitrogen fixation, and the significance of this N2 fixation for the global carbon cycle.
Abstract: The surface water of the marine environment has traditionally been viewed as a nitrogen (N) limited habitat, and this has guided the development of conceptual biogeochemical models focusing largely on the reservoir of nitrate as the critical source of N to sustain primary productivity. However, selected groups of Bacteria, including cyanobacteria, and Archaea can utilize dinitrogen (N2) as an alternative N source. In the marine environment, these microorganisms can have profound effects on net community production processes and can impact the coupling of C-N-P cycles as well as the net oceanic sequestration of atmospheric carbon dioxide. As one component of an integrated ‘Nitrogen Transport and Transformations’ project, we have begun to re-assess our understanding of (1) the biotic sources and rates of N2 fixation in the world’s oceans, (2) the major controls on rates of oceanic N2 fixation, (3) the significance of this N2 fixation for the global carbon cycle and (4) the role of human activities in the alteration of oceanic N2 fixation. Preliminary results indicate that rates of N2 fixation, especially in subtropical and tropical open ocean habitats, have a major role in the global marine N budget. Iron (Fe) bioavailability appears to be an important control and is, therefore, critical in extrapolation to global rates of N2 fixation. Anthropogenic perturbations may alter N2 fixation in coastal environments through habitat destruction and eutrophication, and open ocean N2 fixation may be enhanced by warming and increased stratification of the upper water column. Global anthropogenic and climatic changes may also affect N2 fixation rates, for example by altering dust inputs (i.e. Fe) or by expansion of subtropical boundaries. Some recent estimates of global ocean N2 fixation are in the range of 100−200 Tg N (1−2 × 1014 g N) yr −1, but have large uncertainties. These estimates are nearly an order of magnitude greater than historical, pre-1980 estimates, but approach modern estimates of oceanic denitrification.

705 citations

Journal ArticleDOI
TL;DR: The cell-penetrating ability of transportan is not restricted by cell type, but seems to be a general feature of this peptide.
Abstract: Transportan is a 27 amino acid-long peptide containing 12 functional amino acids from the amino terminus of the neuropeptide galanin and mastoparan in the carboxyl terminus, connected via a lysine Transportan is a cell-penetrating peptide as judged by indirect immunofluorescence using Ne13-biotinyl-transportan The internalization of biotinyl-transportan is energy independent and takes place efficiently at 37°, 4°, and 0°C Cellular uptake of transportan is probably not mediated by endocytosis, since it cannot be blocked by treating the cells with phenylarsine oxide or hyperosmolar sucrose solution and is nonsaturable The kinetics of internalization was studied with the aid of the 125I-labeled peptide At 37°C, the maximal intracellular concentration is reached in about 20 min The internalized transportan is protected from trypsin The cell-penetrating ability of transportan is not restricted by cell type, but seems to be a general feature of this peptide In Bowes' melanoma cells, transportan first lo

704 citations

Journal ArticleDOI
TL;DR: In this review, classical nucleation theory, as well as established concepts of spinodal decomposition and liquid-liquid demixing, is introduced together with a description of the recently proposed pre-nucleation cluster pathway.
Abstract: Crystallisation is at the heart of various scientific disciplines, but still the understanding of the molecular mechanisms underlying phase separation and the formation of the first solid particles in aqueous solution is rather limited. In this review, classical nucleation theory, as well as established concepts of spinodal decomposition and liquid–liquid demixing, is introduced together with a description of the recently proposed pre-nucleation cluster pathway. The features of pre-nucleation clusters are presented and discussed in relation to recent modifications of the classical and established models for phase separation, together with a review of experimental work and computer simulations on the characteristics of pre-nucleation clusters of calcium phosphate, calcium carbonate, iron(oxy)(hydr)oxide, silica, and also amino acids as an example of small organic molecules. The role of pre-nucleation clusters as solute precursors in the emergence of a new phase is summarized, and the link between the chemical speciation of homogeneous solutions and the process of phase separation via pre-nucleation clusters is highlighted.

704 citations

Journal ArticleDOI
B. S. Acharya1, Marcos Daniel Actis2, T. Aghajani3, G. Agnetta4  +979 moreInstitutions (122)
TL;DR: The Cherenkov Telescope Array (CTA) as discussed by the authors is a very high-energy (VHE) gamma ray observatory with an international collaboration with more than 1000 members from 27 countries in Europe, Asia, Africa and North and South America.

701 citations

Journal ArticleDOI
TL;DR: The first part of this review summarizes the current knowledge concerning elongases and desaturases and focuses on the insights gained from studies with these mice, as well as from investigations on cell cultures.

700 citations


Authors

Showing all 21326 results

NameH-indexPapersCitations
Hongjie Dai197570182579
Hyun-Chul Kim1764076183227
Richard S. Ellis169882136011
Stanley B. Prusiner16874597528
Anders Björklund16576984268
Yang Yang1642704144071
Tomas Hökfelt158103395979
Bengt Winblad1531240101064
Zhenwei Yang150956109344
Marvin Johnson1491827119520
Jan-Åke Gustafsson147105898804
Markus Ackermann14661071071
Hans-Olov Adami14590883473
Markku Kulmala142148785179
Kjell Fuxe142147989846
Network Information
Related Institutions (5)
University of Copenhagen
149.7K papers, 5.9M citations

91% related

University of Amsterdam
140.8K papers, 5.9M citations

90% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

90% related

University of Oxford
258.1K papers, 12.9M citations

90% related

Utrecht University
139.3K papers, 6.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023158
2022537
20213,664
20203,602
20193,347
20183,092