scispace - formally typeset
Search or ask a question
Institution

Stony Brook University

EducationStony Brook, New York, United States
About: Stony Brook University is a education organization based out in Stony Brook, New York, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 32534 authors who have published 68218 publications receiving 3035131 citations. The organization is also known as: State University of New York at Stony Brook & SUNY Stony Brook.


Papers
More filters
Journal ArticleDOI
TL;DR: A new version of the Community Atmosphere Model (CAM) has been developed and released to the climate community as discussed by the authors, which is an atmospheric general circulation model that includes the Community Land Model (CLM3), an optional slab ocean model, and a thermodynamic sea ice model.
Abstract: A new version of the Community Atmosphere Model (CAM) has been developed and released to the climate community. CAM Version 3 (CAM3) is an atmospheric general circulation model that includes the Community Land Model (CLM3), an optional slab ocean model, and a thermodynamic sea ice model. The dynamics and physics in CAM3 have been changed substantially compared to implementations in previous versions. CAM3 includes options for Eulerian spectral, semi-Lagrangian, and finite-volume formulations of the dynamical equations. It supports coupled simulations using either finite-volume or Eulerian dynamics through an explicit set of adjustable parameters governing the model time step, cloud parameterizations, and condensation processes. The model includes major modifications to the parameterizations of moist processes, radiation processes, and aerosols. These changes have improved several aspects of the simulated climate, including more realistic tropical tropopause temperatures, boreal winter land surfac...

947 citations

Journal ArticleDOI
TL;DR: Immediate completion lymph‐node dissection increased the rate of regional disease control and provided prognostic information but did not increase melanoma‐specific survival among patients with melanoma and sentinel‐node metastases.
Abstract: BackgroundSentinel-lymph-node biopsy is associated with increased melanoma-specific survival (i.e., survival until death from melanoma) among patients with node-positive intermediate-thickness melanomas (1.2 to 3.5 mm). The value of completion lymph-node dissection for patients with sentinel-node metastases is not clear. MethodsIn an international trial, we randomly assigned patients with sentinel-node metastases detected by means of standard pathological assessment or a multimarker molecular assay to immediate completion lymph-node dissection (dissection group) or nodal observation with ultrasonography (observation group). The primary end point was melanoma-specific survival. Secondary end points included disease-free survival and the cumulative rate of nonsentinel-node metastasis. ResultsImmediate completion lymph-node dissection was not associated with increased melanoma-specific survival among 1934 patients with data that could be evaluated in an intention-to-treat analysis or among 1755 patients in t...

946 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the energy landscapes of chemical systems have an overall shape and explore their intrinsic dimensionalities and the power of evolutionary CSP is illustrated through applications that examine matter at high pressure, where new, unexpected phenomena take place.
Abstract: Once the crystal structure of a chemical substance is known, many properties can be predicted reliably and routinely. Therefore if researchers could predict the crystal structure of a material before it is synthesized, they could significantly accelerate the discovery of new materials. In addition, the ability to predict crystal structures at arbitrary conditions of pressure and temperature is invaluable for the study of matter at extreme conditions, where experiments are difficult.Crystal structure prediction (CSP), the problem of finding the most stable arrangement of atoms given only the chemical composition, has long remained a major unsolved scientific problem. Two problems are entangled here: search, the efficient exploration of the multidimensional energy landscape, and ranking, the correct calculation of relative energies. For organic crystals, which contain a few molecules in the unit cell, search can be quite simple as long as a researcher does not need to include many possible isomers or confor...

945 citations

Journal ArticleDOI
TL;DR: In this paper, a detailed analysis of the three-dimensional harmonic oscillator excited in coherent states is given, with special attention to the uncertainty relations and the transition to the classical limit.
Abstract: The quantum-mechanical description of phase and angle variables is reviewed, with emphasis on the proper mathematical description of these coordinates. The relations among the operators and state vectors under consideration are clarified in the context of the Heisenberg uncertainty relations. The familiar case of the azimuthal angle variable $\ensuremath{\phi}$ and its "conjugate" angular momentum ${L}_{z}$ is discussed. Various pitfalls associated with the periodicity problem are avoided by employing periodic variables ($sin\ensuremath{\phi}$ and $cos\ensuremath{\phi}$ to describe the phase variable. Well-defined uncertainty relations are derived and discussed. A detailed analysis of the three-dimensional harmonic oscillator excited in coherent states is given. A detailed analysis of the simple harmonic oscillator is given. The usual assumption that a (Hermitian) phase operator $\ensuremath{\varphi}$ (conjugate to the number operator $N$) exists is shown to be erroneous. However, cosine and sine operators $C$ and $S$ exist and are the appr\'opriate phase variables. A Poisson bracket argument using action-angle (rather $J$, $cos\ensuremath{\varphi}$, $sin\ensuremath{\varphi}$) variables is used to deduce $C$ and $S$. The spectra and eigenfunctions of these operators are investigated, along with the important "phase-difference" periodic variables. The properties of the oscillator variables in the various types of states are analyzed with special attention to the uncertainty relations and the transition to the classical limit. The utility of coherent states as a basis for the description of the evolution of the density matrix is emphasized. In this basis it is easy to identify the classical Liouville equation in action-angle variables along with quantum-mechanical "corrections." Mention is made of possible physical applications to superfluid systems.

945 citations


Authors

Showing all 32829 results

NameH-indexPapersCitations
Zhong Lin Wang2452529259003
Dennis W. Dickson1911243148488
Hyun-Chul Kim1764076183227
David Baker1731226109377
J. N. Butler1722525175561
Roderick T. Bronson169679107702
Nora D. Volkow165958107463
Jovan Milosevic1521433106802
Thomas E. Starzl150162591704
Paolo Boffetta148145593876
Jacques Banchereau14363499261
Larry R. Squire14347285306
John D. E. Gabrieli14248068254
Alexander Milov142114393374
Meenakshi Narain1421805147741
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

97% related

Stanford University
320.3K papers, 21.8M citations

96% related

Columbia University
224K papers, 12.8M citations

96% related

University of California, Los Angeles
282.4K papers, 15.7M citations

96% related

University of Pennsylvania
257.6K papers, 14.1M citations

95% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023124
2022453
20213,609
20203,747
20193,426
20183,127