scispace - formally typeset
Search or ask a question
Institution

Stowers Institute for Medical Research

NonprofitKansas City, Missouri, United States
About: Stowers Institute for Medical Research is a nonprofit organization based out in Kansas City, Missouri, United States. It is known for research contribution in the topics: Stem cell & Chromatin. The organization has 1171 authors who have published 2150 publications receiving 146521 citations.


Papers
More filters
Journal ArticleDOI
23 Oct 2003-Nature
TL;DR: It is concluded that SNO cells lining the bone surface function as a key component of the niche to support HSCs, and that BMP signalling through BMPRIA controls the number of H SCs by regulating niche size.
Abstract: Haematopoietic stem cells (HSCs) are a subset of bone marrow cells that are capable of self-renewal and of forming all types of blood cells (multi-potential). However, the HSC 'niche'--the in vivo regulatory microenvironment where HSCs reside--and the mechanisms involved in controlling the number of adult HSCs remain largely unknown. The bone morphogenetic protein (BMP) signal has an essential role in inducing haematopoietic tissue during embryogenesis. We investigated the roles of the BMP signalling pathway in regulating adult HSC development in vivo by analysing mutant mice with conditional inactivation of BMP receptor type IA (BMPRIA). Here we show that an increase in the number of spindle-shaped N-cadherin+CD45- osteoblastic (SNO) cells correlates with an increase in the number of HSCs. The long-term HSCs are found attached to SNO cells. Two adherens junction molecules, N-cadherin and beta-catenin, are asymmetrically localized between the SNO cells and the long-term HSCs. We conclude that SNO cells lining the bone surface function as a key component of the niche to support HSCs, and that BMP signalling through BMPRIA controls the number of HSCs by regulating niche size.

2,949 citations

Journal ArticleDOI
LaDeana W. Hillier1, Webb Miller2, Ewan Birney, Wesley C. Warren1  +171 moreInstitutions (39)
09 Dec 2004-Nature
TL;DR: A draft genome sequence of the red jungle fowl, Gallus gallus, provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes.
Abstract: We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.

2,579 citations

Journal ArticleDOI
TL;DR: A single-wavelength GCaMP2-based GECI (GCaMP3) is developed, with increased baseline fluorescence, increased dynamic range and higher affinity for calcium, and long-term imaging in the motor cortex of behaving mice revealed large fluorescence changes in imaged neurons over months.
Abstract: Genetically encoded calcium indicators (GECIs) can be used to image activity in defined neuronal populations. However, current GECIs produce inferior signals compared to synthetic indicators and recording electrodes, precluding detection of low firing rates. We developed a single-wavelength GCaMP2-based GECI (GCaMP3), with increased baseline fluorescence (3-fold), increased dynamic range (3-fold) and higher affinity for calcium (1.3-fold). We detected GCaMP3 fluorescence changes triggered by single action potentials in pyramidal cell dendrites, with signal-to-noise ratio and photostability substantially better than those of GCaMP2, D3cpVenus and TN-XXL. In Caenorhabditis elegans chemosensory neurons and the Drosophila melanogaster antennal lobe, sensory stimulation-evoked fluorescence responses were significantly enhanced with GCaMP3 (4-6-fold). In somatosensory and motor cortical neurons in the intact mouse, GCaMP3 detected calcium transients with amplitudes linearly dependent on action potential number. Long-term imaging in the motor cortex of behaving mice revealed large fluorescence changes in imaged neurons over months.

1,862 citations

Journal ArticleDOI
TL;DR: It was evident that multiple mechanistic steps lead to the stable heritance of the epigenetic phenotype.
Abstract: A recent meeting (December 2008) regarding chromatin-based epigenetics was hosted by the Banbury Conference Center and Cold Spring Harbor Laboratory. The intent was to discuss aspects of epigenetic control of genomic function, and to arrive at a consensus definition of "epigenetics" to be considered by the broader community. It was evident that multiple mechanistic steps lead to the stable heritance of the epigenetic phenotype. Below we provide our view and interpretation of the proceedings at the meeting.

1,640 citations

Journal ArticleDOI
24 Mar 2011-Nature
TL;DR: 111,195 new elements are identified, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches.
Abstract: Drosophila melanogaster is one of the most well studied genetic model organisms; nonetheless, its genome still contains unannotated coding and non-coding genes, transcripts, exons and RNA editing sites. Full discovery and annotation are pre-requisites for understanding how the regulation of transcription, splicing and RNA editing directs the development of this complex organism. Here we used RNA-Seq, tiling microarrays and cDNA sequencing to explore the transcriptome in 30 distinct developmental stages. We identified 111,195 new elements, including thousands of genes, coding and non-coding transcripts, exons, splicing and editing events, and inferred protein isoforms that previously eluded discovery using established experimental, prediction and conservation-based approaches. These data substantially expand the number of known transcribed elements in the Drosophila genome and provide a high-resolution view of transcriptome dynamics throughout development.

1,427 citations


Authors

Showing all 1177 results

NameH-indexPapersCitations
Eugene V. Koonin1991063175111
Stephen J. Elledge162406112878
Leroy Hood158853128452
Richard D. Klausner13128457652
Jian Zhou128300791402
William S. Lane11324655543
J. Wade Harper10927966267
Yuri I. Wolf10431764881
Jerry L. Workman10328739104
Robb Krumlauf9523129920
John J. McCarthy9537643700
Ali Shilatifard8826434536
Laurence Florens8329327313
Michael P. Washburn8129632468
Joan W. Conaway7920022766
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

97% related

Broad Institute
11.6K papers, 1.5M citations

95% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

95% related

Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

95% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202218
2021127
2020147
2019142
2018133