scispace - formally typeset
Search or ask a question
Institution

Sun Yat-sen University

EducationGuangzhou, Guangdong, China
About: Sun Yat-sen University is a education organization based out in Guangzhou, Guangdong, China. It is known for research contribution in the topics: Population & Cancer. The organization has 115149 authors who have published 113763 publications receiving 2286465 citations. The organization is also known as: Zhongshan University & SYSU.
Topics: Population, Cancer, Metastasis, Cell growth, Apoptosis


Papers
More filters
Journal ArticleDOI
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016.

10,401 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2964 moreInstitutions (200)
TL;DR: In this article, a search for the Standard Model Higgs boson in proton-proton collisions with the ATLAS detector at the LHC is presented, which has a significance of 5.9 standard deviations, corresponding to a background fluctuation probability of 1.7×10−9.

9,282 citations

Journal ArticleDOI
Mohsen Naghavi1, Haidong Wang1, Rafael Lozano1, Adrian Davis2  +728 moreInstitutions (294)
TL;DR: In the Global Burden of Disease Study 2013 (GBD 2013) as discussed by the authors, the authors used the GBD 2010 methods with some refinements to improve accuracy applied to an updated database of vital registration, survey, and census data.

5,792 citations

Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
Theo Vos1, Christine Allen1, Megha Arora1, Ryan M Barber1  +696 moreInstitutions (260)
TL;DR: The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) as discussed by the authors was used to estimate the incidence, prevalence, and years lived with disability for diseases and injuries at the global, regional, and national scale over the period of 1990 to 2015.

5,050 citations


Authors

Showing all 115971 results

NameH-indexPapersCitations
Yi Chen2174342293080
Jing Wang1844046202769
Yang Gao1682047146301
Yang Yang1642704144071
Peter Carmeliet164844122918
Frank J. Gonzalez160114496971
Xiang Zhang1541733117576
Rui Zhang1512625107917
Seeram Ramakrishna147155299284
Joseph J.Y. Sung142124092035
Joseph Lau140104899305
Bin Liu138218187085
Georgios B. Giannakis137132173517
Kwok-Yung Yuen1371173100119
Shu Li136100178390
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

95% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

University of Hong Kong
99.1K papers, 3.2M citations

92% related

National University of Singapore
165.4K papers, 5.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023349
20221,547
202115,594
202013,929
201911,766