scispace - formally typeset
Search or ask a question
Institution

Sun Yat-sen University

EducationGuangzhou, Guangdong, China
About: Sun Yat-sen University is a education organization based out in Guangzhou, Guangdong, China. It is known for research contribution in the topics: Population & Cancer. The organization has 115149 authors who have published 113763 publications receiving 2286465 citations. The organization is also known as: Zhongshan University & SYSU.
Topics: Population, Cancer, Metastasis, Cell growth, Apoptosis


Papers
More filters
Journal ArticleDOI
TL;DR: This work realizes topologically protected, robust and unidirectional coupling as well as optical transport on a silicon-on-insulator platform by exploiting the valley degree of freedom, and shows the prototype of robustly integrated devices.
Abstract: Silicon-on-insulator (SOI) enables for capability improvement of modern information processing systems by replacing some of their electrical counterparts. With the miniaturization of SOI platform, backscattering suppression is one of the central issues to avoid energy loss and signal distortion in telecommunications. Valley, a new degree of freedom, provides an intriguing way for topologically robust information transfer and unidirectional flow of light, in particular for subwavelength strategy that still remains challenge in topological nanophotonics. Here, we realize topological transport in a SOI valley photonic crystal (VPC) slab. In such inversion asymmetry slab, singular Berry curvature near Brillouin zone corners guarantees valley-dependent topological edge states below light cone, maintaining a balance between in-plane robustness and out-of-plane radiation. Topologically robust transport at telecommunication wavelength is observed along two sharp-bend VPC interfaces with a compact size (< 10 um), showing flat-top high transmission of around 10% bandwidth. Furthermore, topological photonic routing is achieved in a bearded-stack VPC interface, originating from broadband unidirectional excitation of the valley-chirality-locked edge state by using a microdisk as a phase vortex generator. Control of valley in SOI platform not only shows a prototype of integrated photonic devices with promising applications for delay line, routing, optical isolation and dense wavelength division multiplexing for information processing based on topological nanophotonics, but also opens a new door towards the observation of non-trivial states even in non-Hermitain systems.

285 citations

Journal ArticleDOI
TL;DR: This study presents a design strategy for pure organic compounds with excellent room-temperature fluorescent-phosphorescent dual-emission (rFPDE) properties, which combines the effective factors of dipenylsulfone group, crystalline state, and heavy atom effect.
Abstract: Organic mechanoluminochromic materials are mechano/piezo-responsive and promising for applications in sensors, displays, and data storage devices. However, their switching range of emission is seriously impeded by only one kind of emission (either a fluorescent or phosphorescent peak) in the spectrum of single organic compounds. This study presents a design strategy for pure organic compounds with excellent room-temperature fluorescent-phosphorescent dual-emission (rFPDE) properties, which combines the effective factors of dipenylsulfone group, crystalline state, and heavy atom effect. Following the principle of color mixing, myriad emission colors with a wide range from orange to purple and across white zone in a straight line in the chromaticity diagram of the Commission Internationale de l'Eclairage (CIE) can be obtained by simply mechanical grinding the compound. The unique properties could be concentrated on a pure organic compound through this design strategy, which provides a new efficient channel for the discovery of efficient mechano-responsive organic materials.

285 citations

Journal ArticleDOI
TL;DR: A short review of recent advances in the design and construction of Ag(i) coordination polymers with special emphasis on the Ag ion coordination geometry, ligand functionality, and supramolecular interactions is provided in this article.
Abstract: The supramolecular chemistry of Ag(i) coordination assemblies continues to attract attention due to their versatile structural diversity and potential physical and chemical functions. This article provides a short review of recent advances in the design and construction of Ag(i) coordination polymers with special emphasis on the Ag(i) ion coordination geometry, ligand functionality, and supramolecular interactions. The potential functions of Ag(i) coordination polymers are briefly summarized.

285 citations

Journal ArticleDOI
TL;DR: It is demonstrated that the catalytic active metal center can cooperate with neighboring hydroxide ligands to boost the photocatalytic CO2 reduction and serve not only as strong hydrogen-bonding donors to stabilize the initial Co-CO2 adduct but also local proton sources to facilitate the C-O bond breaking.
Abstract: Converting CO2 into fuels via photochemical reactions relies on highly efficient and selective catalysts. We demonstrate that the catalytic active metal center can cooperate with neighboring hydroxide ligands to boost the photocatalytic CO2 reduction. Six cobalt-based metal–organic frameworks (MOFs) with different coordination environments are studied at the same reaction condition (photosensitizer, electron donor, water/organic mixed solvent, and visible light). In pure CO2 at 1.0 atm, the MOFs bearing μ-OH– ligands neighboring the open Co centers showed CO selectivities and turnover frequencies (TOFs) up to 98.2% and 0.059 s–1, respectively. More importantly, their TOFs reduced only ca. 20% when the CO2 partial pressure was reduced to 0.1 atm, while other MOFs reduced by at least 90%. Periodic density functional theory calculations and isotope tracing experiments showed that the μ-OH– ligands serve not only as strong hydrogen-bonding donors to stabilize the initial Co–CO2 adduct but also local proton so...

285 citations

Journal ArticleDOI
TL;DR: Water and several wild aquatic species including Chinese mysterysnail, prawn, fish, and water snake were collected from a reservoir surrounded by several e-waste recycling workshops in South China to investigate the levels and bioaccumulation extent of polybrominated diphenyl ethers and polychlorinated biphenyls released from electronic waste (e-w waste) which was processed by crude recycling method.

285 citations


Authors

Showing all 115971 results

NameH-indexPapersCitations
Yi Chen2174342293080
Jing Wang1844046202769
Yang Gao1682047146301
Yang Yang1642704144071
Peter Carmeliet164844122918
Frank J. Gonzalez160114496971
Xiang Zhang1541733117576
Rui Zhang1512625107917
Seeram Ramakrishna147155299284
Joseph J.Y. Sung142124092035
Joseph Lau140104899305
Bin Liu138218187085
Georgios B. Giannakis137132173517
Kwok-Yung Yuen1371173100119
Shu Li136100178390
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

95% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

University of Hong Kong
99.1K papers, 3.2M citations

92% related

National University of Singapore
165.4K papers, 5.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023349
20221,547
202115,594
202013,929
201911,766