scispace - formally typeset
Search or ask a question
Institution

Sun Yat-sen University

EducationGuangzhou, Guangdong, China
About: Sun Yat-sen University is a education organization based out in Guangzhou, Guangdong, China. It is known for research contribution in the topics: Population & Cancer. The organization has 115149 authors who have published 113763 publications receiving 2286465 citations. The organization is also known as: Zhongshan University & SYSU.
Topics: Population, Cancer, Metastasis, Cell growth, Apoptosis


Papers
More filters
Journal ArticleDOI
TL;DR: The obtained hexagonal structured lanthanide orthophosphate LnPO(4) (Ln = La --> Tb) can convert to the monoclinic monazite structured products, and their morphologies remained the same after calcination at 900 degrees C in air.
Abstract: A simple hydrothermal method has been developed for the systematic synthesis of lanthanide orthophosphate crystals with different crystalline phases and morphologies. It has been shown that pure LnPO4 compounds change structure with decreasing Ln ionic radius: i.e., the orthophosphates from Ho to Lu as well as Y exist only in the tetragonal zircon (xenotime) structure, while the orthophosphates from La to Dy exist in the hexagonal structure under hydrothermal treatment. The obtained hexagonal structured lanthanide orthophosphate LnPO4 (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, and Dy) products have a wirelike morphology. In contrast, tetragonal LnPO4 (Ln = Ho, Er, Tm, Yb, Lu, Y) samples prepared under the same experimental conditions consist of nanoparticles. The obtained hexagonal LnPO4 (Ln = La → Tb) can convert to the monoclinic monazite structured products, and their morphologies remained the same after calcination at 900 °C in air (Hexagonal DyPO4 is an exceptional case, it transformed to tetragonal DyPO...

444 citations

Journal ArticleDOI
TL;DR: Cryo-EM and functional analyses of furin-cleaved spike from SARS-CoV-2 and the closely related spike from bat virus RaTG13 reveal differences in protein stability and binding to human receptor ACE2.
Abstract: SARS-CoV-2 is thought to have emerged from bats, possibly via a secondary host. Here, we investigate the relationship of spike (S) glycoprotein from SARS-CoV-2 with the S protein of a closely related bat virus, RaTG13. We determined cryo-EM structures for RaTG13 S and for both furin-cleaved and uncleaved SARS-CoV-2 S; we compared these with recently reported structures for uncleaved SARS-CoV-2 S. We also biochemically characterized their relative stabilities and affinities for the SARS-CoV-2 receptor ACE2. Although the overall structures of human and bat virus S proteins are similar, there are key differences in their properties, including a more stable precleavage form of human S and about 1,000-fold tighter binding of SARS-CoV-2 to human receptor. These observations suggest that cleavage at the furin-cleavage site decreases the overall stability of SARS-CoV-2 S and facilitates the adoption of the open conformation that is required for S to bind to the ACE2 receptor.

444 citations

Journal ArticleDOI
Wei Hu1, Ruqi Chen1, Wei Xie1, Lilan Zou1, Ni Qin1, Dinghua Bao1 
TL;DR: It is reported that CoNi2S4 nanosheet arrays exhibit ultrahigh specific capacitance and areal capacitance, as well as good rate capability and cycling stability, and superior electrochemical performances in an assembled aqueous asymmetric supercapacitor.
Abstract: We report that CoNi2S4 nanosheet arrays exhibit ultrahigh specific capacitance of 2906 F g–1 and areal capacitance of 6.39 F cm–2 at a current density of 5 mA cm–2, as well as good rate capability and cycling stability, and superior electrochemical performances with an energy density of 33.9 Wh kg–1 at a power density of 409 W kg–1 have been achieved in an assembled aqueous asymmetric supercapacitor. The CoNi2S4 nanosheet arrays were in situ grown on nickel foams by a facile two-step hydrothermal method. The formation mechanism of the CoNi2S4 nanosheet arrays was based on an anion-exchange reaction involving the pseudo Kirkendall effect. The two aqueous asymmetric supercapacitors in series using the CoNi2S4 nanosheet arrays as the positive electrodes can power four 3-mm-diameter red-light-emitting diodes. The outstanding supercapacitive performance of CoNi2S4 nanosheet arrays can be attributed to ravine-like nanosheet architectures with good mechanical and electrical contact, low crystallinity and good we...

443 citations

Journal ArticleDOI
TL;DR: A novel electricity-theft detection method based on wide and deep convolutional neural networks (CNN) model that outperforms other existing methods in detection accuracy and captures the global features of 1-D electricity consumption data.
Abstract: Electricity theft is harmful to power grids. Integrating information flows with energy flows, smart grids can help to solve the problem of electricity theft owning to the availability of massive data generated from smart grids. The data analysis on the data of smart grids is helpful in detecting electricity theft because of the abnormal electricity consumption pattern of energy thieves. However, the existing methods have poor detection accuracy of electricity theft since most of them were conducted on one-dimensional (1-D) electricity consumption data and failed to capture the periodicity of electricity consumption. In this paper, we originally propose a novel electricity-theft detection method based on wide and deep convolutional neural networks (CNN) model to address the above concerns. In particular, wide and deep CNN model consists of two components: the wide component and the deep CNN component. The deep CNN component can accurately identify the nonperiodicity of electricity theft and the periodicity of normal electricity usage based on 2-D electricity consumption data. Meanwhile, the wide component can capture the global features of 1-D electricity consumption data. As a result, wide and deep CNN model can achieve the excellent performance in electricity-theft detection. Extensive experiments based on realistic dataset show that wide and deep CNN model outperforms other existing methods.

443 citations

Journal ArticleDOI
TL;DR: Coordination polymers (CPs) and metal-organic frameworks (MOFs) are among the most prolific research areas of inorganic chemistry and crystal engineering in the last 15 years, and yet it still seems that consensus is lacking about what they really are or are not as discussed by the authors.
Abstract: Coordination polymers (CPs) and metal–organic frameworks (MOFs) are among the most prolific research areas of inorganic chemistry and crystal engineering in the last 15 years, and yet it still seems that consensus is lacking about what they really are, or are not.

443 citations


Authors

Showing all 115971 results

NameH-indexPapersCitations
Yi Chen2174342293080
Jing Wang1844046202769
Yang Gao1682047146301
Yang Yang1642704144071
Peter Carmeliet164844122918
Frank J. Gonzalez160114496971
Xiang Zhang1541733117576
Rui Zhang1512625107917
Seeram Ramakrishna147155299284
Joseph J.Y. Sung142124092035
Joseph Lau140104899305
Bin Liu138218187085
Georgios B. Giannakis137132173517
Kwok-Yung Yuen1371173100119
Shu Li136100178390
Network Information
Related Institutions (5)
Peking University
181K papers, 4.1M citations

95% related

Shanghai Jiao Tong University
184.6K papers, 3.4M citations

94% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

University of Hong Kong
99.1K papers, 3.2M citations

92% related

National University of Singapore
165.4K papers, 5.4M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023349
20221,547
202115,594
202013,929
201911,766