scispace - formally typeset
Search or ask a question

Showing papers by "Sungkyunkwan University published in 2020"


Journal ArticleDOI
TL;DR: This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovSKite solar cells, and possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.
Abstract: With rapid progress in a power conversion efficiency (PCE) to reach 25%, metal halide perovskite-based solar cells became a game-changer in a photovoltaic performance race. Triggered by the development of the solid-state perovskite solar cell in 2012, intense follow-up research works on structure design, materials chemistry, process engineering, and device physics have contributed to the revolutionary evolution of the solid-state perovskite solar cell to be a strong candidate for a next-generation solar energy harvester. The high efficiency in combination with the low cost of materials and processes are the selling points of this cell over commercial silicon or other organic and inorganic solar cells. The characteristic features of perovskite materials may enable further advancement of the PCE beyond those afforded by the silicon solar cells, toward the Shockley-Queisser limit. This review summarizes the fundamentals behind the optoelectronic properties of perovskite materials, as well as the important approaches to fabricating high-efficiency perovskite solar cells. Furthermore, possible next-generation strategies for enhancing the PCE over the Shockley-Queisser limit are discussed.

1,116 citations


Journal ArticleDOI
TL;DR: In previously untreated patients with confirmed AML who were ineligible for intensive chemotherapy, overall survival was longer and the incidence of remission was higher among patients who received azacitidine plus venetoclax than among those who received zsitidine alone.
Abstract: Background Older patients with acute myeloid leukemia (AML) have a dismal prognosis, even after treatment with a hypomethylating agent. Azacitidine added to venetoclax had promising effica...

1,097 citations


Journal ArticleDOI
TL;DR: Sotorasib showed encouraging anticancer activity in patients with heavily pretreated advanced solid tumors harboring the KRAS p.G12C mutation and responded to pharmacokinetics and objective response according to Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1.
Abstract: Background No therapies for targeting KRAS mutations in cancer have been approved. The KRAS p.G12C mutation occurs in 13% of non–small-cell lung cancers (NSCLCs) and in 1 to 3% of colorect...

882 citations


Journal ArticleDOI
TL;DR: A minimum set of common outcome measures for studies of COVID-19, which includes a measure of viral burden, patient survival, and patient progression through the health-care system by use of the WHO Clinical Progression Scale are urged.
Abstract: Summary Clinical research is necessary for an effective response to an emerging infectious disease outbreak. However, research efforts are often hastily organised and done using various research tools, with the result that pooling data across studies is challenging. In response to the needs of the rapidly evolving COVID-19 outbreak, the Clinical Characterisation and Management Working Group of the WHO Research and Development Blueprint programme, the International Forum for Acute Care Trialists, and the International Severe Acute Respiratory and Emerging Infections Consortium have developed a minimum set of common outcome measures for studies of COVID-19. This set includes three elements: a measure of viral burden (quantitative PCR or cycle threshold), a measure of patient survival (mortality at hospital discharge or at 60 days), and a measure of patient progression through the health-care system by use of the WHO Clinical Progression Scale, which reflects patient trajectory and resource use over the course of clinical illness. We urge investigators to include these key data elements in ongoing and future studies to expedite the pooling of data during this immediate threat, and to hone a tool for future needs.

882 citations


Journal ArticleDOI
TL;DR: A literature review on recent applications and design aspects of the intelligent reflecting surface (IRS) in the future wireless networks, and the joint optimization of the IRS’s phase control and the transceivers’ transmission control in different network design problems, e.g., rate maximization and power minimization problems.
Abstract: This paper presents a literature review on recent applications and design aspects of the intelligent reflecting surface (IRS) in the future wireless networks. Conventionally, the network optimization has been limited to transmission control at two endpoints, i.e., end users and network controller. The fading wireless channel is uncontrollable and becomes one of the main limiting factors for performance improvement. The IRS is composed of a large array of scattering elements, which can be individually configured to generate additional phase shifts to the signal reflections. Hence, it can actively control the signal propagation properties in favor of signal reception, and thus realize the notion of a smart radio environment. As such, the IRS’s phase control, combined with the conventional transmission control, can potentially bring performance gain compared to wireless networks without IRS. In this survey, we first introduce basic concepts of the IRS and the realizations of its reconfigurability. Then, we focus on applications of the IRS in wireless communications. We overview different performance metrics and analytical approaches to characterize the performance improvement of IRS-assisted wireless networks. To exploit the performance gain, we discuss the joint optimization of the IRS’s phase control and the transceivers’ transmission control in different network design problems, e.g., rate maximization and power minimization problems. Furthermore, we extend the discussion of IRS-assisted wireless networks to some emerging use cases. Finally, we highlight important practical challenges and future research directions for realizing IRS-assisted wireless networks in beyond 5G communications.

642 citations


Journal ArticleDOI
TL;DR: Maintenance avelumab plus best supportive care significantly prolonged overall survival, as compared with best supported care alone, among patients with urothelial cancer who had disease that had not progressed with first-line chemotherapy.
Abstract: Background Platinum-based chemotherapy is standard-of-care first-line treatment for advanced urothelial carcinoma. However, progression-free survival and overall survival are limited by ch...

639 citations


Journal ArticleDOI
TL;DR: A consensus between researchers in the field is reported on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols, and additional procedures to account for properties specific to PSCs are proposed.
Abstract: Improving the long-term stability of perovskite solar cells is critical to the deployment of this technology. Despite the great emphasis laid on stability-related investigations, publications lack consistency in experimental procedures and parameters reported. It is therefore challenging to reproduce and compare results and thereby develop a deep understanding of degradation mechanisms. Here, we report a consensus between researchers in the field on procedures for testing perovskite solar cell stability, which are based on the International Summit on Organic Photovoltaic Stability (ISOS) protocols. We propose additional procedures to account for properties specific to PSCs such as ion redistribution under electric fields, reversible degradation and to distinguish ambient-induced degradation from other stress factors. These protocols are not intended as a replacement of the existing qualification standards, but rather they aim to unify the stability assessment and to understand failure modes. Finally, we identify key procedural information which we suggest reporting in publications to improve reproducibility and enable large data set analysis. Reliability of stability data for perovskite solar cells is undermined by a lack of consistency in the test conditions and reporting. This Consensus Statement outlines practices for testing and reporting stability tailoring ISOS protocols for perovskite devices.

621 citations


Journal ArticleDOI
TL;DR: In this article, the authors discuss solution-based and vapour-phase coating methods for the fabrication of large-area perovskite films, examine the progress in performance and the parameters affecting the properties of large area coatings.
Abstract: Since the report in 2012 of a solid-state perovskite solar cell (PSC) with a power-conversion efficiency (PCE) of 9.7% and a stability of 500 h, intensive efforts have been made to increase the certified PCE, reaching 25.2% in 2019. The PCE of PSCs now exceeds that of conventional thin-film solar-cell technologies, and the rate at which this increase has been achieved is unprecedented in the history of photovoltaics. Moreover, the development of moisture-stable and heat-stable materials has increased the stability of PSCs. Small-area devices ( 100 cm2) substrates required for commercialization. Thus, materials and methods need to be developed for coating large-area PSCs. In this Review, we discuss solution-based and vapour-phase coating methods for the fabrication of large-area perovskite films, examine the progress in performance and the parameters affecting the properties of large-area coatings, and provide an overview of the methodologies for achieving high-efficiency perovskite solar modules. The scalable fabrication of perovskite solar cells and solar modules requires the development of new materials and coating methods. In this Review, we discuss solution-based and vapour-phase coating methods for large-area perovskite films and examine the progress in performance and the parameters affecting large-area coatings.

460 citations


Journal ArticleDOI
TL;DR: The authors document the changes in the transcriptome of human lung adenocarcinoma using single-cell sequencing and link cancer cell signatures to immune cell dynamics to improve understanding of molecular and cellular dynamics in metastatic lung cancer.
Abstract: Advanced metastatic cancer poses utmost clinical challenges and may present molecular and cellular features distinct from an early-stage cancer. Herein, we present single-cell transcriptome profiling of metastatic lung adenocarcinoma, the most prevalent histological lung cancer type diagnosed at stage IV in over 40% of all cases. From 208,506 cells populating the normal tissues or early to metastatic stage cancer in 44 patients, we identify a cancer cell subtype deviating from the normal differentiation trajectory and dominating the metastatic stage. In all stages, the stromal and immune cell dynamics reveal ontological and functional changes that create a pro-tumoral and immunosuppressive microenvironment. Normal resident myeloid cell populations are gradually replaced with monocyte-derived macrophages and dendritic cells, along with T-cell exhaustion. This extensive single-cell analysis enhances our understanding of molecular and cellular dynamics in metastatic lung cancer and reveals potential diagnostic and therapeutic targets in cancer-microenvironment interactions. Understanding the mechanisms that lead to lung adenocarcinoma metastasis is important for identifying new therapeutics. Here, the authors document the changes in the transcriptome of human lung adenocarcinoma using single-cell sequencing and link cancer cell signatures to immune cell dynamics.

444 citations


Journal ArticleDOI
24 Aug 2020
TL;DR: In this paper, a review of the basic physical principles of these various techniques on the engineering of quasi-particle and optical bandgaps, their bandgap tunability, potentials and limitations in practical 2D device technologies are provided.
Abstract: Semiconductors are the basis of many vital technologies such as electronics, computing, communications, optoelectronics, and sensing. Modern semiconductor technology can trace its origins to the invention of the point contact transistor in 1947. This demonstration paved the way for the development of discrete and integrated semiconductor devices and circuits that has helped to build a modern society where semiconductors are ubiquitous components of everyday life. A key property that determines the semiconductor electrical and optical properties is the bandgap. Beyond graphene, recently discovered two-dimensional (2D) materials possess semiconducting bandgaps ranging from the terahertz and mid-infrared in bilayer graphene and black phosphorus, visible in transition metal dichalcogenides, to the ultraviolet in hexagonal boron nitride. In particular, these 2D materials were demonstrated to exhibit highly tunable bandgaps, achieved via the control of layers number, heterostructuring, strain engineering, chemical doping, alloying, intercalation, substrate engineering, as well as an external electric field. We provide a review of the basic physical principles of these various techniques on the engineering of quasi-particle and optical bandgaps, their bandgap tunability, potentials and limitations in practical realization in future 2D device technologies.

434 citations


Journal ArticleDOI
TL;DR: Selpercatinib had durable efficacy, including intracranial activity, with mainly low-grade toxic effects in patients with RET fusion-positive NSCLC who had previously received platinum-based chemotherapy and those who were previously untreated.
Abstract: Background RET fusions are oncogenic drivers in 1 to 2% of non–small-cell lung cancers (NSCLCs). In patients with RET fusion–positive NSCLC, the efficacy and safety of selective RET inhibi...

Journal ArticleDOI
TL;DR: In this paper, a physically sound circuit model based on the characteristics of the battery cell system is presented. And the relationship between the obtained resistances of the bulk (Rb), charge transfer reaction (Rct), interface layer (RSEI), diffusion process (W) and battery characteristics, such as the state of charge (SOC), temperature, and state of health (SOH), is introduced.
Abstract: As research on secondary batteries becomes important, interest in analytical methods to examine the condition of secondary batteries is also increasing. Among these methods, the electrochemical impedance spectroscopy (EIS) method is one of the most attractive diagnostic techniques due to its convenience, quickness, accuracy, and low cost. However, since the obtained spectra are complicated signals representing several impedance elements, it is necessary to understand the whole electrochemical environment for a meaningful analysis. Based on the understanding of the whole system, the circuit elements constituting the cell can be obtained through construction of a physically sound circuit model. Therefore, this mini-review will explain how to construct a physically sound circuit model according to the characteristics of the battery cell system and then introduce the relationship between the obtained resistances of the bulk (Rb), charge transfer reaction (Rct), interface layer (RSEI), diffusion process (W) and battery characteristics, such as the state of charge (SOC), temperature, and state of health (SOH).

Journal ArticleDOI
TL;DR: This review will introduce the current understanding of reported reactions accounting for the extra capacity of anode materials, which includes formation/decomposition of electrolyte-derived surface layer, the possibility of additional charge storage at sharp interfaces between electronic and ionic sinks, redox reactions of Li-containing species, unconventional activity of structural defects, and metallic-cluster like Li storage.
Abstract: To advance current Li rechargeable batteries further, tremendous emphasis has been made on the development of anode materials with higher capacities than the widely commercialized graphite. Some of these anode materials exhibit capacities above the theoretical value predicted based on conventional mechanisms of Li storage, namely insertion, alloying, and conversion. In addition, in contrast to conventional observations of loss upon cycling, the capacity has been found to increase during repeated cycling in a significant number of cases. As the internal environment in the battery is very complicated and continuously changing, these abnormal charge storage behaviors are caused by diverse reactions. In this review, we will introduce our current understanding of reported reactions accounting for the extra capacity. It includes formation/decomposition of electrolyte-derived surface layer, the possibility of additional charge storage at sharp interfaces between electronic and ionic sinks, redox reactions of Li-containing species, unconventional activity of structural defects, and metallic-cluster like Li storage. We will also discuss how the changes in the anode can induce capacity increase upon cycling. With this knowledge, new insights into possible strategies to effectively and sustainably utilize these abnormal charge storage mechanisms to produce vertical leaps in performance of anode materials will be laid out.

Journal ArticleDOI
TL;DR: Spatial association was the key to the spatial spread during the early stages of the COVID-19 pandemic in mainland China, and most of the models indicated a significant spatial association of CO VID-19 infections from around 22 January 2020.

Journal ArticleDOI
TL;DR: During the early phase of the coronavirus disease epidemic in Hong Kong, 1,715 survey respondents reported high levels of perceived risk, mild anxiety, and adoption of personal-hygiene, travel-avoidance, and social-distancing measures.
Abstract: During the early phase of the coronavirus disease epidemic in Hong Kong, 1,715 survey respondents reported high levels of perceived risk, mild anxiety, and adoption of personal-hygiene, travel-avoidance, and social-distancing measures. Widely adopted individual precautionary measures, coupled with early government actions, might slow transmission early in the outbreak.

Journal ArticleDOI
TL;DR: The collective view of the cellular landscape and intercellular interactions in colorectal cancer provide mechanistic information for the design of efficient immuno-oncology treatment strategies.
Abstract: Immunotherapy for metastatic colorectal cancer is effective only for mismatch repair-deficient tumors with high microsatellite instability that demonstrate immune infiltration, suggesting that tumor cells can determine their immune microenvironment. To understand this cross-talk, we analyzed the transcriptome of 91,103 unsorted single cells from 23 Korean and 6 Belgian patients. Cancer cells displayed transcriptional features reminiscent of normal differentiation programs, and genetic alterations that apparently fostered immunosuppressive microenvironments directed by regulatory T cells, myofibroblasts and myeloid cells. Intercellular network reconstruction supported the association between cancer cell signatures and specific stromal or immune cell populations. Our collective view of the cellular landscape and intercellular interactions in colorectal cancer provide mechanistic information for the design of efficient immuno-oncology treatment strategies.

Journal ArticleDOI
TL;DR: Various high energy cathode materials which can be used to build next-generation lithium ion batteries are discussed, which includes nickel and lithium-rich layered oxide materials, high voltage spinel oxides, polyanion, cation disordered rock-salt oxides and conversion materials.
Abstract: The accelerating development of technologies requires a significant energy consumption, and consequently the demand for advanced energy storage devices is increasing at a high rate. In the last two decades, lithium-ion batteries have been the most robust technology, supplying high energy and power density. Improving cathode materials is one of the ways to satisfy the need for even better batteries. Therefore developing new types of positive electrode materials by increasing cell voltage and capacity with stability is the best way towards the next-generation Li rechargeable batteries. To achieve this goal, understanding the principles of the materials and recognizing the problems confronting the state-of-the-art cathode materials are essential prerequisites. This Review presents various high-energy cathode materials which can be used to build next-generation lithium-ion batteries. It includes nickel and lithium-rich layered oxide materials, high voltage spinel oxides, polyanion, cation disordered rock-salt oxides and conversion materials. Particular emphasis is given to the general reaction and degradation mechanisms during the operation as well as the main challenges and strategies to overcome the drawbacks of these materials.

Journal ArticleDOI
TL;DR: Entrectinib is active with durable disease control in patients with ROS1 fusion-positive NSCLC, and is well tolerated with a manageable safety profile, making it amenable to long-term dosing in these patients.
Abstract: Summary Background Recurrent gene fusions, such as ROS1 fusions, are oncogenic drivers of various cancers, including non-small-cell lung cancer (NSCLC). Up to 36% of patients with ROS1 fusion-positive NSCLC have brain metastases at the diagnosis of advanced disease. Entrectinib is a ROS1 inhibitor that has been designed to effectively penetrate and remain in the CNS. We explored the use of entrectinib in patients with locally advanced or metastatic ROS1 fusion-positive NSCLC. Methods We did an integrated analysis of three ongoing phase 1 or 2 trials of entrectinib (ALKA-372-001, STARTRK-1, and STARTRK-2). The efficacy-evaluable population included adult patients (aged ≥18 years) with locally advanced or metastatic ROS1 fusion-positive NSCLC who received entrectinib at a dose of at least 600 mg orally once per day, with at least 12 months' follow-up. All patients had an Eastern Cooperative Oncology Group performance status of 0–2, and previous cancer treatment (except for ROS1 inhibitors) was allowed. The primary endpoints were the proportion of patients with an objective response (complete or partial response according to Response Evaluation Criteria in Solid Tumors version 1.1) and duration of response, and were evaluated by blinded independent central review. The safety-evaluable population for the safety analysis included all patients with ROS1 fusion-positive NSCLC in the three trials who received at least one dose of entrectinib (irrespective of dose or duration of follow-up). These ongoing studies are registered with ClinicalTrials.gov , NCT02097810 (STARTRK-1) and NCT02568267 (STARTRK-2), and EudraCT, 2012–000148–88 (ALKA-372-001). Findings Patients were enrolled in ALKA-372-001 from Oct 26, 2012, to March 27, 2018; in STARTRK-1 from Aug 7, 2014, to May 10, 2018; and in STARTRK-2 from Nov 19, 2015 (enrolment is ongoing). At the data cutoff date for this analysis (May 31, 2018), 41 (77%; 95% CI 64–88) of 53 patients in the efficacy-evaluable population had an objective response. Median follow-up was 15·5 monhts (IQR 13·4–20·2). Median duration of response was 24·6 months (95% CI 11·4–34·8). In the safety-evaluable population, 79 (59%) of 134 patients had grade 1 or 2 treatment-related adverse events. 46 (34%) of 134 patients had grade 3 or 4 treatment-related adverse events, with the most common being weight increase (ten [8%]) and neutropenia (five [4%]). 15 (11%) patients had serious treatment-related adverse events, the most common of which were nervous system disorders (four [3%]) and cardiac disorders (three [2%]). No treatment-related deaths occurred. Interpretation Entrectinib is active with durable disease control in patients with ROS1 fusion-positive NSCLC, and is well tolerated with a manageable safety profile, making it amenable to long-term dosing in these patients. These data highlight the need to routinely test for ROS1 fusions to broaden therapeutic options for patients with ROS1 fusion-positive NSCLC. Funding Ignyta/F Hoffmann-La Roche.

Journal ArticleDOI
TL;DR: The findings suggest that nurses have high burnout symptoms prevalence warranting attention and implementation, and serves as an impetus for intervention studies and policy change to improve nurses' work conditions and overall healthcare quality.

Journal ArticleDOI
Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam, Federico Ambrogi  +2248 moreInstitutions (155)
TL;DR: For the first time, predictions from pythia8 obtained with tunes based on NLO or NNLO PDFs are shown to reliably describe minimum-bias and underlying-event data with a similar level of agreement to predictions from tunes using LO PDF sets.
Abstract: New sets of CMS underlying-event parameters (“tunes”) are presented for the pythia8 event generator. These tunes use the NNPDF3.1 parton distribution functions (PDFs) at leading (LO), next-to-leading (NLO), or next-to-next-to-leading (NNLO) orders in perturbative quantum chromodynamics, and the strong coupling evolution at LO or NLO. Measurements of charged-particle multiplicity and transverse momentum densities at various hadron collision energies are fit simultaneously to determine the parameters of the tunes. Comparisons of the predictions of the new tunes are provided for observables sensitive to the event shapes at LEP, global underlying event, soft multiparton interactions, and double-parton scattering contributions. In addition, comparisons are made for observables measured in various specific processes, such as multijet, Drell–Yan, and top quark-antiquark pair production including jet substructure observables. The simulation of the underlying event provided by the new tunes is interfaced to a higher-order matrix-element calculation. For the first time, predictions from pythia8 obtained with tunes based on NLO or NNLO PDFs are shown to reliably describe minimum-bias and underlying-event data with a similar level of agreement to predictions from tunes using LO PDF sets.

Journal ArticleDOI
Christian Lieven1, Moritz Emanuel Beber1, Brett G. Olivier2, Frank Bergmann3, Meriç Ataman4, Parizad Babaei1, Jennifer A. Bartell1, Lars M. Blank5, Siddharth Chauhan6, Kevin Correia7, Christian Diener8, Christian Diener9, Andreas Dräger10, Birgitta E. Ebert11, Birgitta E. Ebert5, Janaka N. Edirisinghe12, José P. Faria12, Adam M. Feist1, Adam M. Feist6, Georgios Fengos4, Ronan M. T. Fleming13, Beatriz García-Jiménez14, Beatriz García-Jiménez15, Vassily Hatzimanikatis4, Wout van Helvoirt16, Wout van Helvoirt17, Christopher S. Henry12, Henning Hermjakob18, Markus J. Herrgård1, Ali Kaafarani1, Hyun Uk Kim19, Zachary A. King6, Steffen Klamt20, Edda Klipp21, Jasper J. Koehorst22, Matthias König21, Meiyappan Lakshmanan23, Dong-Yup Lee23, Dong-Yup Lee24, Sang Yup Lee1, Sang Yup Lee19, Sunjae Lee25, Sunjae Lee26, Nathan E. Lewis6, Filipe Liu12, Hongwu Ma27, Daniel Machado, Radhakrishnan Mahadevan7, Paulo Maia, Adil Mardinoglu25, Adil Mardinoglu26, Gregory L. Medlock28, Jonathan M. Monk6, Jens Nielsen1, Jens Nielsen29, Lars K. Nielsen1, Lars K. Nielsen11, Juan Nogales14, Intawat Nookaew30, Intawat Nookaew29, Bernhard O. Palsson6, Bernhard O. Palsson1, Jason A. Papin28, Kiran Raosaheb Patil, Mark G. Poolman31, Nathan D. Price8, Osbaldo Resendis-Antonio9, Anne Richelle6, Isabel Rocha32, Isabel Rocha33, Benjamin Sanchez29, Benjamin Sanchez1, Peter J. Schaap22, Rahuman S. Malik Sheriff18, Saeed Shoaie26, Saeed Shoaie25, Nikolaus Sonnenschein1, Bas Teusink2, Paulo Vilaça, Jon Olav Vik17, Judith A. H. Wodke21, Joana C. Xavier34, Qianqian Yuan27, Maksim Zakhartsev17, Cheng Zhang26 
TL;DR: A community effort to develop a test suite named MEMOTE (for metabolic model tests) to assess GEM quality, and advocate adoption of the latest version of the Systems Biology Markup Language level 3 flux balance constraints (SBML3FBC) package as the primary description and exchange format.
Abstract: We acknowledge D. Dannaher and A. Lopez for their supporting work on the Angular parts of MEMOTE; resources and support from the DTU Computing Center; J. Cardoso, S. Gudmundsson, K. Jensen and D. Lappa for their feedback on conceptual details; and P. D. Karp and I. Thiele for critically reviewing the manuscript. We thank J. Daniel, T. Kristjansdottir, J. Saez-Saez, S. Sulheim, and P. Tubergen for being early adopters of MEMOTE and for providing written testimonials. J.O.V. received the Research Council of Norway grants 244164 (GenoSysFat), 248792 (DigiSal) and 248810 (Digital Life Norway); M.Z. received the Research Council of Norway grant 244164 (GenoSysFat); C.L. received funding from the Innovation Fund Denmark (project “Environmentally Friendly Protein Production (EFPro2)”); C.L., A.K., N. S., M.B., M.A., D.M., P.M, B.J.S., P.V., K.R.P. and M.H. received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 686070 (DD-DeCaF); B.G.O., F.T.B. and A.D. acknowledge funding from the US National Institutes of Health (NIH, grant number 2R01GM070923-13); A.D. was supported by infrastructural funding from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections; N.E.L. received funding from NIGMS R35 GM119850, Novo Nordisk Foundation NNF10CC1016517 and the Keck Foundation; A.R. received a Lilly Innovation Fellowship Award; B.G.-J. and J. Nogales received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no 686585 for the project LIAR, and the Spanish Ministry of Economy and Competitivity through the RobDcode grant (BIO2014-59528-JIN); L.M.B. has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement 633962 for project P4SB; R.F. received funding from the US Department of Energy, Offices of Advanced Scientific Computing Research and the Biological and Environmental Research as part of the Scientific Discovery Through Advanced Computing program, grant DE-SC0010429; A.M., C.Z., S.L. and J. Nielsen received funding from The Knut and Alice Wallenberg Foundation, Advanced Computing program, grant #DE-SC0010429; S.K.’s work was in part supported by the German Federal Ministry of Education and Research (de.NBI partner project “ModSim” (FKZ: 031L104B)); E.K. and J.A.H.W. were supported by the German Federal Ministry of Education and Research (project “SysToxChip”, FKZ 031A303A); M.K. is supported by the Federal Ministry of Education and Research (BMBF, Germany) within the research network Systems Medicine of the Liver (LiSyM, grant number 031L0054); J.A.P. and G.L.M. acknowledge funding from US National Institutes of Health (T32-LM012416, R01-AT010253, R01-GM108501) and the Wagner Foundation; G.L.M. acknowledges funding from a Grand Challenges Exploration Phase I grant (OPP1211869) from the Bill & Melinda Gates Foundation; H.H. and R.S.M.S. received funding from the Biotechnology and Biological Sciences Research Council MultiMod (BB/N019482/1); H.U.K. and S.Y.L. received funding from the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries (grants NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557) from the Ministry of Science and ICT through the National Research Foundation (NRF) of Korea; H.U.K. received funding from the Bio & Medical Technology Development Program of the NRF, the Ministry of Science and ICT (NRF-2018M3A9H3020459); P.B., B.J.S., Z.K., B.O.P., C.L., M.B., N.S., M.H. and A.F. received funding through Novo Nordisk Foundation through the Center for Biosustainability at the Technical University of Denmark (NNF10CC1016517); D.-Y.L. received funding from the Next-Generation BioGreen 21 Program (SSAC, PJ01334605), Rural Development Administration, Republic of Korea; G.F. was supported by the RobustYeast within ERA net project via SystemsX.ch; V.H. received funding from the ETH Domain and Swiss National Science Foundation; M.P. acknowledges Oxford Brookes University; J.C.X. received support via European Research Council (666053) to W.F. Martin; B.E.E. acknowledges funding through the CSIRO-UQ Synthetic Biology Alliance; C.D. is supported by a Washington Research Foundation Distinguished Investigator Award. I.N. received funding from National Institutes of Health (NIH)/National Institute of General Medical Sciences (NIGMS) (grant P20GM125503).

Journal ArticleDOI
TL;DR: This review discusses recent developments in the field of highly integrated mobile and wearable point-of-care testing (POCT) systems and highlights aspects of sample handling platforms, recognition elements and sensing methods, and new materials for signal transducers and powering devices for integration into mobile or wearable POCT systems.
Abstract: The rapid growth of research in the areas of chemical and biochemical sensors, lab-on-a-chip, mobile technology, and wearable electronics offers an unprecedented opportunity in the development of mobile and wearable point-of-care testing (POCT) systems for self-testing. Successful implementation of such POCT technologies leads to minimal user intervention during operation to reduce user errors; user-friendly, easy-to-use and simple detection platforms; high diagnostic sensitivity and specificity; immediate clinical assessment; and low manufacturing and consumables costs. In this review, we discuss recent developments in the field of highly integrated mobile and wearable POCT systems. In particular, aspects of sample handling platforms, recognition elements and sensing methods, and new materials for signal transducers and powering devices for integration into mobile or wearable POCT systems will be highlighted. We also summarize current challenges and future prospects for providing personal healthcare with sample-in result-out mobile and wearable POCT.

Journal ArticleDOI
26 Aug 2020-Nature
TL;DR: It is shown that ELF3 proteins in plants from hotter climates, with no detectable PrD, are active at high temperatures, and lack thermal responsiveness, which represents a previously unknown thermosensory mechanism.
Abstract: Temperature controls plant growth and development, and climate change has already altered the phenology of wild plants and crops1. However, the mechanisms by which plants sense temperature are not well understood. The evening complex is a major signalling hub and a core component of the plant circadian clock2,3. The evening complex acts as a temperature-responsive transcriptional repressor, providing rhythmicity and temperature responsiveness to growth through unknown mechanisms2,4-6. The evening complex consists of EARLY FLOWERING 3 (ELF3)4,7, a large scaffold protein and key component of temperature sensing; ELF4, a small α-helical protein; and LUX ARRYTHMO (LUX), a DNA-binding protein required to recruit the evening complex to transcriptional targets. ELF3 contains a polyglutamine (polyQ) repeat8-10, embedded within a predicted prion domain (PrD). Here we find that the length of the polyQ repeat correlates with thermal responsiveness. We show that ELF3 proteins in plants from hotter climates, with no detectable PrD, are active at high temperatures, and lack thermal responsiveness. The temperature sensitivity of ELF3 is also modulated by the levels of ELF4, indicating that ELF4 can stabilize the function of ELF3. In both Arabidopsis and a heterologous system, ELF3 fused with green fluorescent protein forms speckles within minutes in response to higher temperatures, in a PrD-dependent manner. A purified fragment encompassing the ELF3 PrD reversibly forms liquid droplets in response to increasing temperatures in vitro, indicating that these properties reflect a direct biophysical response conferred by the PrD. The ability of temperature to rapidly shift ELF3 between active and inactive states via phase transition represents a previously unknown thermosensory mechanism.

Journal ArticleDOI
TL;DR: In this article, surface functionalization or heteroatom doping of 2D materials, hybridization with other nanostructured materials (0D quantum dots, 1D nanotubes/nanowires, and other 2D nanosheets), and finally architecting into 3D structures along with the advantages of two-dimensional building blocks can open up new opportunities for Li-S batteries.
Abstract: The inherent technical challenges of lithium–sulfur (Li–S) batteries have arisen from the intrinsic redox electrochemistry occurring on the Li and S electrodes, which can significantly deteriorate the S utilization and life cycle. Two-dimensional (2D) nanomaterials composed of atomic or near-atomic thickness with infinite lateral dimensions have been proven to be meritorious as emerging materials for energy storage applications due to their unique structures, remarkable physical properties, and tunable surface chemistry. Herein, we argue that surface functionalization or heteroatom doping of 2D materials, hybridization with other nanostructured materials (0D quantum dots, 1D nanotubes/nanowires, and other 2D nanosheets), and finally architecting into 3D structures along with the advantages of 2D building blocks can open up new opportunities for Li–S batteries. We also focus on the future directions of Li–S batteries in the design of S cathodes and separators utilizing the intrinsic and extrinsic properties of 2D nanomaterials.

Journal ArticleDOI
TL;DR: In this article, the minimization of interfacial nonradiative recombination (NRR) losses through interface engineering especially for perovovision devices is discussed. But this work is restricted to the perovision case.
Abstract: Because interfacial nonradiative recombination (NRR) has a significant influence on device performance, the minimization of interfacial NRR losses through interface engineering especially for perov...

Journal ArticleDOI
G. Caria1, Phillip Urquijo1, Iki Adachi2, Iki Adachi3  +228 moreInstitutions (77)
TL;DR: This work constitutes the most precise measurements of R(D) and R (D^{*}) performed to date as well as the first result for R( D) based on a semileptonic tagging method.
Abstract: The experimental results on the ratios of branching fractions $\mathcal{R}(D) = {\cal B}(\bar{B} \to D \tau^- \bar{ u}_{\tau})/{\cal B}(\bar{B} \to D \ell^- \bar{ u}_{\ell})$ and $\mathcal{R}(D^*) = {\cal B}(\bar{B} \to D^* \tau^- \bar{ u}_{\tau})/{\cal B}(\bar{B} \to D^* \ell^- \bar{ u}_{\ell})$, where $\ell$ denotes an electron or a muon, show a long-standing discrepancy with the Standard Model predictions, and might hint to a violation of lepton flavor universality. We report a new simultaneous measurement of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$, based on a data sample containing $772 \times 10^6$ $B\bar{B}$ events recorded at the $\Upsilon(4S)$ resonance with the Belle detector at the KEKB $e^+ e^-$ collider. In this analysis the tag-side $B$ meson is reconstructed in a semileptonic decay mode and the signal-side $\tau$ is reconstructed in a purely leptonic decay. The measured values are $\mathcal{R}(D)= 0.307 \pm 0.037 \pm 0.016$ and $\mathcal{R}(D^*) = 0.283 \pm 0.018 \pm 0.014$, where the first uncertainties are statistical and the second are systematic. These results are in agreement with the Standard Model predictions within $0.2$, $1.1$ and $0.8$ standard deviations for $\mathcal{R}(D)$, $\mathcal{R}(D^*)$ and their combination, respectively. This work constitutes the most precise measurements of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$ performed to date as well as the first result for $\mathcal{R}(D)$ based on a semileptonic tagging method.

Journal ArticleDOI
TL;DR: This Review provides an overview of the advances in materials and device design that are enabling the realization of implantable electronic interfaces for long-term, multiplexed recording and stimulation of the brain and nervous system.
Abstract: Engineered systems that can serve as chronically stable, high-performance electronic recording and stimulation interfaces to the brain and other parts of the nervous system, with cellular-level resolution across macroscopic areas, are of broad interest to the neuroscience and biomedical communities. Challenges remain in the development of biocompatible materials and the design of flexible implants for these purposes, where ulimate goals are for performance attributes approaching those of conventional wafer-based technologies and for operational timescales reaching the human lifespan. This Review summarizes recent advances in this field, with emphasis on active and passive constituent materials, design architectures and integration methods that support necessary levels of biocompatibility, electronic functionality, long-term stable operation in biofluids and reliability for use in vivo. Bioelectronic systems that enable multiplexed electrophysiological mapping across large areas at high spatiotemporal resolution are surveyed, with a particular focus on those with proven chronic stability in live animal models and scalability to thousands of channels over human-brain-scale dimensions. Research in materials science will continue to underpin progress in this field of study. This Review provides an overview of the advances in materials and device design that are enabling the realization of implantable electronic interfaces for long-term, multiplexed recording and stimulation of the brain and nervous system.

Journal ArticleDOI
M. G. Aartsen1, Markus Ackermann, Jenni Adams1, Juanan Aguilar2  +361 moreInstitutions (48)
TL;DR: The results, all based on searches for a cumulative neutrino signal integrated over the 10 years of available data, motivate further study of these and similar sources, including time-dependent analyses, multimessenger correlations, and the possibility of stronger evidence with coming upgrades to the detector.
Abstract: This Letter presents the results from pointlike neutrino source searches using ten years of IceCube data collected between April 6, 2008 and July 10, 2018. We evaluate the significance of an astrophysical signal from a pointlike source looking for an excess of clustered neutrino events with energies typically above ∼1 TeV among the background of atmospheric muons and neutrinos. We perform a full-sky scan, a search within a selected source catalog, a catalog population study, and three stacked Galactic catalog searches. The most significant point in the northern hemisphere from scanning the sky is coincident with the Seyfert II galaxy NGC 1068, which was included in the source catalog search. The excess at the coordinates of NGC 1068 is inconsistent with background expectations at the level of 2.9σ after accounting for statistical trials from the entire catalog. The combination of this result along with excesses observed at the coordinates of three other sources, including TXS 0506+056, suggests that, collectively, correlations with sources in the northern catalog are inconsistent with background at 3.3σ significance. The southern catalog is consistent with background. These results, all based on searches for a cumulative neutrino signal integrated over the 10 years of available data, motivate further study of these and similar sources, including time-dependent analyses, multimessenger correlations, and the possibility of stronger evidence with coming upgrades to the detector.

Posted ContentDOI
Alexander Kurilshikov1, Carolina Medina-Gomez2, Rodrigo Bacigalupe3, Djawad Radjabzadeh2, Jun Wang4, Ayse Demirkan5, Ayse Demirkan1, Caroline I. Le Roy6, Juan Antonio Raygoza Garay7, Juan Antonio Raygoza Garay8, Casey T. Finnicum9, Xingrong Liu10, Daria V. Zhernakova11, Daria V. Zhernakova1, Marc Jan Bonder1, Tue H. Hansen12, Fabian Frost13, Malte C. Rühlemann14, Williams Turpin7, Williams Turpin8, Jee-Young Moon15, Han-Na Kim16, Kreete Lüll17, Elad Barkan18, Shiraz A. Shah19, Myriam Fornage20, Joanna Szopinska-Tokov, Zachary D. Wallen21, Dmitrii Borisevich12, Lars Agréus10, Anna Andreasson22, Corinna Bang14, Larbi Bedrani8, Jordana T. Bell6, Hans Bisgaard19, Michael Boehnke23, Dorret I. Boomsma24, Robert D. Burk15, Annique Claringbould1, Kenneth Croitoru7, Kenneth Croitoru8, Gareth E. Davies24, Cornelia M. van Duijn25, Cornelia M. van Duijn2, Liesbeth Duijts2, Gwen Falony3, Jingyuan Fu1, Adriaan van der Graaf1, Torben Hansen12, Georg Homuth13, David A. Hughes26, Richard G. IJzerman27, Matthew A. Jackson6, Matthew A. Jackson25, Vincent W. V. Jaddoe2, Marie Joossens3, Torben Jørgensen12, Daniel Keszthelyi28, Rob Knight29, Markku Laakso30, Matthias Laudes, Lenore J. Launer31, Wolfgang Lieb14, Aldons J. Lusis32, Ad A.M. Masclee28, Henriette A. Moll2, Zlatan Mujagic28, Qi Qibin15, Daphna Rothschild18, Hocheol Shin16, Søren J. Sørensen12, Claire J. Steves6, Jonathan Thorsen19, Nicholas J. Timpson26, Raul Y. Tito3, Sara Vieira-Silva3, Uwe Völker13, Henry Völzke13, Urmo Võsa1, Kaitlin H Wade26, Susanna Walter33, Kyoko Watanabe24, Stefan Weiss13, Frank Ulrich Weiss13, Omer Weissbrod34, Harm-Jan Westra1, Gonneke Willemsen24, Haydeh Payami21, Daisy Jonkers28, Alejandro Arias Vasquez35, Eco J. C. de Geus24, Katie A. Meyer36, Jakob Stokholm19, Eran Segal18, Elin Org17, Cisca Wijmenga1, Hyung Lae Kim37, Robert C. Kaplan38, Tim D. Spector6, André G. Uitterlinden2, Fernando Rivadeneira2, Andre Franke14, Markus M. Lerch13, Lude Franke1, Serena Sanna39, Serena Sanna1, Mauro D'Amato, Oluf Pedersen12, Andrew D. Paterson8, Robert Kraaij2, Jeroen Raes3, Alexandra Zhernakova1 
16 Dec 2020-bioRxiv
TL;DR: A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome has causal effects in ulcerative colitis and rheumatoid arthritis.
Abstract: To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 out of 410 genera were detected in more than 95% samples. A genome-wide association study (GWAS) of host genetic variation in relation to microbial taxa identified 31 loci affecting microbiome at a genome-wide significant (P

Journal ArticleDOI
TL;DR: This analysis presents the most definitive mutational landscape of mitochondrial genomes and identifies several hypermutated cases, frequent somatic nuclear transfer of mt DNA and high variability of mtDNA copy number in many cancers.
Abstract: Mitochondria are essential cellular organelles that play critical roles in cancer. Here, as part of the International Cancer Genome Consortium/The Cancer Genome Atlas Pan-Cancer Analysis of Whole Genomes Consortium, which aggregated whole-genome sequencing data from 2,658 cancers across 38 tumor types, we performed a multidimensional, integrated characterization of mitochondrial genomes and related RNA sequencing data. Our analysis presents the most definitive mutational landscape of mitochondrial genomes and identifies several hypermutated cases. Truncating mutations are markedly enriched in kidney, colorectal and thyroid cancers, suggesting oncogenic effects with the activation of signaling pathways. We find frequent somatic nuclear transfers of mitochondrial DNA, some of which disrupt therapeutic target genes. Mitochondrial copy number varies greatly within and across cancers and correlates with clinical variables. Co-expression analysis highlights the function of mitochondrial genes in oxidative phosphorylation, DNA repair and the cell cycle, and shows their connections with clinically actionable genes. Our study lays a foundation for translating mitochondrial biology into clinical applications.