scispace - formally typeset
Search or ask a question
Institution

Sungkyunkwan University

EducationSeoul, South Korea
About: Sungkyunkwan University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Graphene & Thin film. The organization has 28229 authors who have published 56428 publications receiving 1352733 citations. The organization is also known as: 성균관대학교.


Papers
More filters
Journal ArticleDOI
TL;DR: A method to optimize the performance of organic field-effect transistors (OFETs) by controlling the work functions of graphene electrodes by functionalizing the surface of SiO2 substrates with self-assembled monolayers (SAMs).
Abstract: We have devised a method to optimize the performance of organic field-effect transistors (OFETs) by controlling the work functions of graphene electrodes by functionalizing the surface of SiO2 substrates with self-assembled monolayers (SAMs). The electron-donating NH2-terminated SAMs induce strong n-doping in graphene, whereas the CH3-terminated SAMs neutralize the p-doping induced by SiO2 substrates, resulting in considerable changes in the work functions of graphene electrodes. This approach was successfully utilized to optimize electrical properties of graphene field-effect transistors and organic electronic devices using graphene electrodes. Considering the patternability and robustness of SAMs, this method would find numerous applications in graphene-based organic electronics and optoelectronic devices such as organic light-emitting diodes and organic photovoltaic devices.

235 citations

Journal ArticleDOI
12 May 2017-Leukemia
TL;DR: The study provides the expected outcome of relapsed multiple myeloma that is refractory to a PI and an IMiD, a benchmark for comparison of new therapies being evaluated.
Abstract: Introduction of new myeloma therapies offers new options for patients refractory to immunomodulatory drugs (IMiDs) and proteasome inhibitors (PIs). In this multicenter study, patients with relapsed multiple myeloma, who have received at least three prior lines of therapy, are refractory to both an IMiD (lenalidomide or pomalidomide) and a PI (bortezomib or carfilzomib), and have been exposed to an alkylating agent were identified. The time patients met the above criteria was defined as time zero (T0). Five hundred and forty-three patients diagnosed between 2006 and 2014 were enrolled in this study. Median age at T0 was 62 years (range 31-87); 61% were males. The median duration between diagnosis and T0 was 3.1 years. The median number of lines of therapy before T0 was 4 (range 3-13). The median overall survival (OS) from T0 for the entire cohort was 13 (95% confidence interval (CI) 11, 15) months. At least one regimen recorded after T0 in 462 (85%) patients, with a median (95% CI) progression-free survival and OS from T0 of 5 (4, 6), and 15.2 (13, 17) months, respectively. The study provides the expected outcome of relapsed multiple myeloma that is refractory to a PI and an IMiD, a benchmark for comparison of new therapies being evaluated.

235 citations

Journal ArticleDOI
TL;DR: It is suggested that the pretreated algal biomass is a suitable feedstock for ethanol production and can have a positive impact on large-scale applied systems.
Abstract: Certain microalgae have been known to use light and various carbon sources to produce carbohydrates, mainly in the form of starch. This is one of the pertinent feedstocks replacing agricultural products for the production of bioethanol by yeast. This study focuses upon dilute acid hydrothermal pretreatments at low cost and high efficiency to compete with current methods, and employs Chlamydomonas reinhardtii UTEX 90 as the feedstock. With dry cells of 5% (w/v), the algal biomass was pretreated with sulfuric acid (1-5%) under temperatures from 100 to 120oC, from 15 to 120 min. As a result, the glucose release from the biomass was maximum at 58% (w/w) after pretreatment with 3% sulfuric acid at 110 degrees for 30 min. This method enabled not only starch, but also the hydrolysis of other oligosaccharides in the algal cell in high efficiency. Arrheniustype of model equation enabled extrapolation of some yields of glucose beyond this range. The pretreated slurry was fermented by yeast, Saccharomyces cerevisiae S288C, resulting in an ethanol yield of 29.2% from algal biomass. This study suggests that the pretreated algal biomass is a suitable feedstock for ethanol production and can have a positive impact on large-scale applied systems.

235 citations

Journal ArticleDOI
TL;DR: The selective functionalization of graphene defect sites, together with the nanowire morphology of deposited Pt, yields a superior platform for sensing applications and high-performance hydrogen gas sensors at room temperature are demonstrated.
Abstract: One-dimensional defects in graphene have a strong influence on its physical properties, such as electrical charge transport and mechanical strength. With enhanced chemical reactivity, such defects may also allow us to selectively functionalize the material and systematically tune the properties of graphene. Here we demonstrate the selective deposition of metal at chemical vapour deposited graphene’s line defects, notably grain boundaries, by atomic layer deposition. Atomic layer deposition allows us to deposit Pt predominantly on graphene’s grain boundaries, folds and cracks due to the enhanced chemical reactivity of these line defects, which is directly confirmed by transmission electron microscopy imaging. The selective functionalization of graphene defect sites, together with the nanowire morphology of deposited Pt, yields a superior platform for sensing applications. Using Pt–graphene hybrid structures, we demonstrate high-performance hydrogen gas sensors at room temperature and show its advantages over other evaporative Pt deposition methods, in which Pt decorates the graphene surface non-selectively. Defects in graphene strongly influence the material's physical properties, leading to the suggestion that defects might be tuned to improve performance. Here, via atomic layer deposition, the authors selectively deposit Pt at graphene line defects and yield a superior platform for sensing applications.

234 citations

Journal ArticleDOI
TL;DR: High-performance, flexible all graphene-based thin film transistor was fabricated on plastic substrates using a graphene active layer, graphene oxide (GO) dielectrics, and graphene electrodes to explore a significant step for the application of graphene toward flexible and stretchable electronics.
Abstract: High-performance, flexible all graphene-based thin film transistor (TFT) was fabricated on plastic substrates using a graphene active layer, graphene oxide (GO) dielectrics, and graphene electrodes. The GO dielectrics exhibit a dielectric constant (3.1 at 77 K), low leakage current (17 mA/cm2), breakdown bias (1.5 × 106 V/cm), and good mechanical flexibility. Graphene-based TFTs showed a hole and electron mobility of 300 and 250 cm2/(V·s), respectively, at a drain bias of −0.1 V. Moreover, graphene TFTs on the plastic substrates exhibited remarkably good mechanical flexibility and optical transmittance. This method explores a significant step for the application of graphene toward flexible and stretchable electronics.

234 citations


Authors

Showing all 28506 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Hyun-Chul Kim1764076183227
Yongsun Kim1562588145619
David J. Mooney15669594172
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Inkyu Park1441767109433
Y. Choi141163198709
Kazunori Kataoka13890870412
E. J. Corey136137784110
Pasi A. Jänne13668589488
Suyong Choi135149597053
Intae Yu134137289870
Tae Jeong Kim132142093959
Anders Hagfeldt12960079912
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Hanyang University
58.8K papers, 1.1M citations

98% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Yonsei University
106.1K papers, 2.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023103
2022588
20214,342
20204,248
20194,124
20183,826