scispace - formally typeset
Search or ask a question
Institution

Sungkyunkwan University

EducationSeoul, South Korea
About: Sungkyunkwan University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Graphene & Thin film. The organization has 28229 authors who have published 56428 publications receiving 1352733 citations. The organization is also known as: 성균관대학교.


Papers
More filters
Journal ArticleDOI
TL;DR: There is a cluster of four methods that rank significantly better than the other methods, with one clear winner, and the inter-scanner robustness ranking shows that not all the methods generalize to unseen scanners.
Abstract: Quantification of cerebral white matter hyperintensities (WMH) of presumed vascular origin is of key importance in many neurological research studies. Currently, measurements are often still obtained from manual segmentations on brain MR images, which is a laborious procedure. The automatic WMH segmentation methods exist, but a standardized comparison of the performance of such methods is lacking. We organized a scientific challenge, in which developers could evaluate their methods on a standardized multi-center/-scanner image dataset, giving an objective comparison: the WMH Segmentation Challenge. Sixty T1 + FLAIR images from three MR scanners were released with the manual WMH segmentations for training. A test set of 110 images from five MR scanners was used for evaluation. The segmentation methods had to be containerized and submitted to the challenge organizers. Five evaluation metrics were used to rank the methods: 1) Dice similarity coefficient; 2) modified Hausdorff distance (95th percentile); 3) absolute log-transformed volume difference; 4) sensitivity for detecting individual lesions; and 5) F1-score for individual lesions. In addition, the methods were ranked on their inter-scanner robustness; 20 participants submitted their methods for evaluation. This paper provides a detailed analysis of the results. In brief, there is a cluster of four methods that rank significantly better than the other methods, with one clear winner. The inter-scanner robustness ranking shows that not all the methods generalize to unseen scanners. The challenge remains open for future submissions and provides a public platform for method evaluation.

194 citations

Journal ArticleDOI
Jungmin Oh1, Heonjoo Jo1, Ah Reum Cho1, Sung Jin Kim1, Jaejoon Han1 
TL;DR: In this article, the authors evaluated the antioxidant and antimicrobial properties of various leafy herbal tea extracts, including rooibos, green tea, black tea, rosemary, lemongrass, mulberry leaf, bamboo leaf, lotus leaf, peppermint, persimmon leaf, and mate tea.

194 citations

Journal ArticleDOI
TL;DR: It is proposed that pair creation and annihilation of nodal lines with Z_{2} monopole charges can mediate a topological phase transition between a normal insulator and a three-dimensional weak Stiefel-Whitney insulator.
Abstract: We study the band topology and the associated linking structure of topological semimetals with nodal lines carrying ${Z}_{2}$ monopole charges, which can be realized in three-dimensional systems invariant under the combination of inversion $P$ and time reversal $T$ when spin-orbit coupling is negligible. In contrast to the well-known $PT$-symmetric nodal lines protected only by the $\ensuremath{\pi}$ Berry phase, in which a single nodal line can exist, the nodal lines with ${Z}_{2}$ monopole charges should always exist in pairs. We show that a pair of nodal lines with ${Z}_{2}$ monopole charges is created by a double band inversion process and that the resulting nodal lines are always linked by another nodal line formed between the two topmost occupied bands. It is shown that both the linking structure and the ${Z}_{2}$ monopole charge are the manifestation of the nontrivial band topology characterized by the second Stiefel-Whitney class, which can be read off from the Wilson loop spectrum. We show that the second Stiefel-Whitney class can serve as a well-defined topological invariant of a $PT$-invariant two-dimensional insulator in the absence of Berry phase. Based on this, we propose that pair creation and annihilation of nodal lines with ${Z}_{2}$ monopole charges can mediate a topological phase transition between a normal insulator and a three-dimensional weak Stiefel-Whitney insulator. Moreover, using first-principles calculations, we predict $ABC$-stacked graphdiyne as a nodal line semimetal (NLSM) with ${Z}_{2}$ monopole charges having the linking structure. Finally, we develop a formula for computing the second Stiefel-Whitney class based on parity eigenvalues at inversion-invariant momenta, which is used to prove the quantized bulk magnetoelectric response of NLSMs with ${Z}_{2}$ monopole charges under a $T$-breaking perturbation.

194 citations

Journal ArticleDOI
TL;DR: A unique surface redox molecular-level mechanism of P sites on oxidized black phosphorus nanosheets that are strongly coupled with graphene via strong interlayer bonding is demonstrated, revealing truly reversible pseudocapacitance.
Abstract: Bulk and two-dimensional black phosphorus are considered to be promising battery materials due to their high theoretical capacities of 2,600 mAh g−1. However, their rate and cycling capabilities are limited by the intrinsic (de-)alloying mechanism. Here, we demonstrate a unique surface redox molecular-level mechanism of P sites on oxidized black phosphorus nanosheets that are strongly coupled with graphene via strong interlayer bonding. These redox-active sites of the oxidized black phosphorus are confined at the amorphorized heterointerface, revealing truly reversible pseudocapacitance (99% of total stored charge at 2,000 mV s−1). Moreover, oxidized black-phosphorus-based electrodes exhibit a capacitance of 478 F g–1 (four times greater than black phosphorus) with a rate capability of ~72% (compared to 21.2% for black phosphorus) and retention of ~91% over 50,000 cycles. In situ spectroelectrochemical and theoretical analyses reveal a reversible change in the surface electronic structure and chemical environment of the surface-exposed P redox sites. Black phosphorus is being considered for energy storage but its rate and cycling capabilities are limited by intrinsic (de-)alloying. Molecular-level surface redox sites on oxidized black phosphorus can now be coupled with graphene via strong interlayer bonding.

194 citations

Journal ArticleDOI
TL;DR: Quercetin limits LPS-induced inflammation via inhibition of Src- and Syk-mediated PI3K-(p85) tyrosine phosphorylation and subsequent TLR4/MyD88/PI3K complex formation that limits activation of downstream signaling pathways.

194 citations


Authors

Showing all 28506 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Hyun-Chul Kim1764076183227
Yongsun Kim1562588145619
David J. Mooney15669594172
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Inkyu Park1441767109433
Y. Choi141163198709
Kazunori Kataoka13890870412
E. J. Corey136137784110
Pasi A. Jänne13668589488
Suyong Choi135149597053
Intae Yu134137289870
Tae Jeong Kim132142093959
Anders Hagfeldt12960079912
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Hanyang University
58.8K papers, 1.1M citations

98% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Yonsei University
106.1K papers, 2.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023103
2022588
20214,342
20204,248
20194,124
20183,826