scispace - formally typeset
Search or ask a question
Institution

Sungkyunkwan University

EducationSeoul, South Korea
About: Sungkyunkwan University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Graphene & Thin film. The organization has 28229 authors who have published 56428 publications receiving 1352733 citations. The organization is also known as: 성균관대학교.


Papers
More filters
Journal ArticleDOI
TL;DR: In terms of the process energy consumption, energy saving could be achieved via omitting the reduction process to fabricate M-rGO from M-GO and the pre-oxidation process to convert As(III) to As(V).

190 citations

Journal ArticleDOI
TL;DR: An anti-solvent for graphene oxide (GO), hexane, is introduced to increase the surface area and the pore volume of the non-stacked GO/reduced GO 3D structure and allows the formation of a highly crumpled non-Stacked GO powder, which clearly shows ideal supercapacitor behavior.
Abstract: An anti-solvent for graphene oxide (GO), hexane, is introduced to increase the surface area and the pore volume of the non-stacked GO/reduced GO 3D structure and allows the formation of a highly crumpled non-stacked GO powder, which clearly shows ideal supercapacitor behavior.

190 citations

Journal ArticleDOI
TL;DR: Three major advanced approaches whose adoption could increase the performance of future WPCN are presented: backscatter communications with energy harvesting; duty-cycle based energy management; and transceiver design for self-sustainable communications.
Abstract: Current wireless and cellular networks are destined to undergo a significant change in the transition to the next generation of network technology. The so called wireless powered communication network (WPCN) has been recently emerging as a promising candidate for achieving the target performance of future networks. According to this paradigm, nodes in a WPCN can be equipped with hardware capable of harvesting energy from wireless signals, that is, their battery can be ubiquitously replenished without physical connections. Recent technological advances in the field of wireless power harvesting and transfer are providing strong evidence of the feasibility of this vision, especially for low-power devices. The future deployment of WPCN is more and more concretely foreseen. The aim of this article is therefore to provide a comprehensive review of the basics and backgrounds of WPCN, current major developments, and open research issues. In particular, we first give an overview of WPCN and its structure. We then present three major advanced approaches whose adoption could increase the performance of future WPCN: backscatter communications with energy harvesting; duty-cycle based energy management; and transceiver design for self-sustainable communications. We discuss implementation perspectives and tools for WPCN. Finally, we outline open research problems for WPCN.

190 citations

Journal ArticleDOI
TL;DR: PEGylation is the most established half-life extension technology in the clinic with proven safety in humans for over two decades and is one of the most evolving and emerging technologies that will be applied for the next two decades.
Abstract: The tremendous potential of biologic drugs is hampered by short half-lives in vivo, resulting in significantly lower potency than activity seen in vitro. These short-acting therapeutic agents require frequent dosing profiles that can reduce applicability to the clinic, particularly for chronic conditions. Therefore, half-life extension technologies are entering the clinic to enable improved or new biologic therapies. PEGylation is the first successful technology to improve pharmacokinetic (PK) profiles of therapeutic agents and has been applied in the clinic for over 25 years. Over 10 PEGylated therapeutics have entered the clinic since the early 1990 s, and new PEGylated agents continue to expand clinical pipelines and drug patent life. PEGylation is the most established half-life extension technology in the clinic with proven safety in humans for over two decades. Still, it is one of the most evolving and emerging technologies that will be applied for the next two decades.

190 citations

Journal ArticleDOI
TL;DR: It is suggested that PELP1 is a novel coregulator of ERα and may have a role in breast cancer tumorigenesis.

190 citations


Authors

Showing all 28506 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Hyun-Chul Kim1764076183227
Yongsun Kim1562588145619
David J. Mooney15669594172
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Inkyu Park1441767109433
Y. Choi141163198709
Kazunori Kataoka13890870412
E. J. Corey136137784110
Pasi A. Jänne13668589488
Suyong Choi135149597053
Intae Yu134137289870
Tae Jeong Kim132142093959
Anders Hagfeldt12960079912
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Hanyang University
58.8K papers, 1.1M citations

98% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Yonsei University
106.1K papers, 2.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023103
2022588
20214,342
20204,248
20194,124
20183,826