scispace - formally typeset
Search or ask a question
Institution

Sungkyunkwan University

EducationSeoul, South Korea
About: Sungkyunkwan University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Graphene & Thin film. The organization has 28229 authors who have published 56428 publications receiving 1352733 citations. The organization is also known as: 성균관대학교.


Papers
More filters
Journal ArticleDOI
TL;DR: It is suggested that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone the authors consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.
Abstract: Despite growing interest and a recent surge in papers, the role of autophagy in glucose and lipid metabolism is unclear. We produced mice with skeletal muscle–specific deletion of Atg7 (encoding autophagy-related 7). Unexpectedly, these mice showed decreased fat mass and were protected from diet-induced obesity and insulin resistance; this phenotype was accompanied by increased fatty acid oxidation and browning of white adipose tissue (WAT) owing to induction of fibroblast growth factor 21 (Fgf21). Mitochondrial dysfunction induced by autophagy deficiency increased Fgf21 expression through induction of Atf4, a master regulator of the integrated stress response. Mitochondrial respiratory chain inhibitors also induced Fgf21 in an Atf4-dependent manner. We also observed induction of Fgf21, resistance to diet-induced obesity and amelioration of insulin resistance in mice with autophagy deficiency in the liver, another insulin target tissue. These findings suggest that autophagy deficiency and subsequent mitochondrial dysfunction promote Fgf21 expression, a hormone we consequently term a 'mitokine', and together these processes promote protection from diet-induced obesity and insulin resistance.

671 citations

Journal ArticleDOI
TL;DR: In this paper, the effects of the energy level between CH3NH3(= MA)PbI3 and MAPbBr3 and a series of triarylamine polymer derivatives containing fluorene and indenofluorene, which have different highest occupied molecular orbital (HOMO) levels, in terms of the photovoltaic behavior were investigated.
Abstract: Besides the generated photocurrent as a key factor that impacts the efficiency of solar cells, the produced photovoltage and fill factor are also of critical importance. Therefore, understanding and optimization of the open-circuit voltage (Voc) of perovskite solar cells, especially with an architecture consisting of mesoporous (mp)-TiO2/perovskite/hole transporting materials (HTMs), are required to further improve the conversion efficiency. In this work, we study the effects of the energy level between CH3NH3(= MA)PbI3 and MAPbBr3 and a series of triarylamine polymer derivatives containing fluorene and indenofluorene, which have different highest occupied molecular orbital (HOMO) levels, in terms of the photovoltaic behaviour. The voltage output of the device is found to be dependent on the higher energy level of perovskite solar absorbers as well as the HOMO level of the HTMs. The combination of MAPbBr3 and a deep-HOMO HTM leads to a high photovoltage of 1.40 V, with a fill factor of 79% and an energy conversion efficiency of up to 6.7%, which is the highest value reported to date for MAPbBr3 perovskite solar cells.

668 citations

Posted Content
TL;DR: In this paper, the authors focus on the third trait and present empirical findings on these "social hubs" -that is, people who maintain a large number of ties to other people - and their influence on the overall process of innovation adoption.
Abstract: The diffusion of an innovation is governed by, among other things, word of mouth. In social systems, growth processes are considered strongly influenced by people who have large number of ties to other people. In the social network literature, such people are called influentials, opinion leaders, mavens, or sometimes hubs. Furthermore, when the marketing literature addresses such people, the focus is typically not on how they influence the overall market but rather on either assessing their influence on people they are in direct contact with or identifying their characteristics.Broadly speaking, influential people are believed to have three important traits: They are convincing (maybe even charismatic), they know a lot (i.e., are experts), and they have large number of social ties (i.e., they know a lot of people). In this article, the authors focus on the third trait and present empirical findings on these 'social hubs' - that is, people who maintain a large number of ties to other people - and their influence on the overall process of innovation adoption.The authors argue that social hubs adopt sooner than other people not because they are innovative but rather because they are exposed earlier to an innovation as a result of their multiple social links. They examine this argument using an existing mapped network and data on multiple diffusion processes. They find that though social hubs have a higher absolute adoption threshold (and, thus, in a sense are less innovative than nonhubs), they adopt sooner because their exposure to those who have already adopted exceeds their threshold sooner than less connected people.The authors then show that social hubs significantly accelerate the diffusion process. They further distinguish between innovator and follower hubs and show that the former influence mainly the speed of adoption in a network, while the latter influence mainly the number of people that eventually adopt the innovation. This difference is consistent with dual market theories: Innovative hubs adopt sooner and initiate the adoption process. Thus, if from some reason they adopt later, the entire process will start later. However, innovators are not trusted by the majority, so innovative hubs have less influence on market size. In contrast, follower hubs influence people in the main market to consider adoption. Thus, although their influence on the speed of growth is small, they have a strong influence on market size. The authors also show that a small sample of hubs can be used to make an early forecast of the entire diffusion process.On the basis of these findings, firms would benefit from collecting information on social hubs and identify as many hubs as possible. They can use these hubs as a sample for early prediction of success versus failure or as a target for direct marketing. If the product is innovative, it would be more important to identify follower hubs that can expose it to the main market. However, if the product is incrementally innovative, innovative hubs may be more useful in making the diffusion faster and thus increase the net present value of revenues.

660 citations

Journal ArticleDOI
TL;DR: JX-594 demonstrated oncolytic and immunotherapy MOA, tumor responses and dose-related survival in individuals with HCC, and subject survival duration was significantly related to dose.
Abstract: Oncolytic viruses and active immunotherapeutics have complementary mechanisms of action (MOA) that are both self amplifying in tumors, yet the impact of dose on subject outcome is unclear. JX-594 (Pexa-Vec) is an oncolytic and immunotherapeutic vaccinia virus. To determine the optimal JX-594 dose in subjects with advanced hepatocellular carcinoma (HCC), we conducted a randomized phase 2 dose-finding trial (n=30). Radiologists infused low- or high-dose JX-594 into liver tumors (days 1, 15 and 29); infusions resulted in acute detectable intravascular JX-594 genomes. Objective intrahepatic Modified Response Evaluation Criteria in Solid Tumors (mRECIST) (15%) and Choi (62%) response rates and intrahepatic disease control (50%) were equivalent in injected and distant noninjected tumors at both doses. JX-594 replication and granulocyte-macrophage colony-stimulating factor (GM-CSF) expression preceded the induction of anticancer immunity. In contrast to tumor response rate and immune endpoints, subject survival duration was significantly related to dose (median survival of 14.1 months compared to 6.7 months on the high and low dose, respectively; hazard ratio 0.39; P=0.020). JX-594 demonstrated oncolytic and immunotherapy MOA, tumor responses and dose-related survival in individuals with HCC.

656 citations

Journal ArticleDOI
M. Huschle1, T. Kuhr2, M. Heck1, P. Goldenzweig1  +218 moreInstitutions (64)
TL;DR: In this paper, the branching fraction ratio R(D)(()*()) of (B) over bar → D-(*())tau(-)(nu)over bar (tau) relative to (B), where l = e or mu, was measured using the full Belle data sample.
Abstract: We report a measurement of the branching fraction ratios R(D)(()*()) of (B) over bar -> D-(*())tau(-)(nu) over bar (tau) relative to (B) over bar -> D-(*())l(-)(nu) over barl (where l = e or mu) using the full Belle data sample of 772 x 10(6)B (B) over bar pairs collected at the Upsilon(4S) resonance with the Belle detector at the KEKB asymmetric-energy e(+)e(-) collider. The measured values are R(D) = 0.375 +/- 0.064(stat) +/- 0.026(syst) and R(D*) = 0.293 +/- 0.038 (stat) +/- 0.015 (syst). The analysis uses hadronic reconstruction of the tag-side B meson and purely leptonic t decays. The results are consistent with earlier measurements and do not show a significant deviation from the standard model prediction.

652 citations


Authors

Showing all 28506 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Hyun-Chul Kim1764076183227
Yongsun Kim1562588145619
David J. Mooney15669594172
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Inkyu Park1441767109433
Y. Choi141163198709
Kazunori Kataoka13890870412
E. J. Corey136137784110
Pasi A. Jänne13668589488
Suyong Choi135149597053
Intae Yu134137289870
Tae Jeong Kim132142093959
Anders Hagfeldt12960079912
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Hanyang University
58.8K papers, 1.1M citations

98% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Yonsei University
106.1K papers, 2.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023103
2022588
20214,342
20204,248
20194,124
20183,826