scispace - formally typeset
Search or ask a question
Institution

Sungkyunkwan University

EducationSeoul, South Korea
About: Sungkyunkwan University is a education organization based out in Seoul, South Korea. It is known for research contribution in the topics: Thin film & Graphene. The organization has 28229 authors who have published 56428 publications receiving 1352733 citations. The organization is also known as: 성균관대학교.


Papers
More filters
Journal ArticleDOI
TL;DR: A new dissipation mechanism in noncollinear spin textures that can lead to a much faster spin relaxation than Gilbert damping is found.
Abstract: We study the collective dynamics of the Skyrmion crystal in thin films of ferromagnetic metals resulting from the nontrivial Skyrmion topology. It is shown that the current-driven motion of the crystal reduces the topological Hall effect and the Skyrmion trajectories bend away from the direction of the electric current (the Skyrmion Hall effect). We find a new dissipation mechanism in noncollinear spin textures that can lead to a much faster spin relaxation than Gilbert damping, calculate the dispersion of phonons in the Skyrmion crystal, and discuss the effects of impurity pinning of Skyrmions.

419 citations

Journal ArticleDOI
TL;DR: In this article, the light harvesting Sb2S3 surface on mesoporous-TiO2 in inorganic-organic heterojunction solar cells is sulfurized with thioacetamide (TA).
Abstract: The light-harvesting Sb2S3 surface on mesoporous-TiO2 in inorganic–organic heterojunction solar cells is sulfurized with thioacetamide (TA). The photovoltaic performances are compared before and after TA treatment, and the state of the Sb2S3 is investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and deep-level transient spectroscopy (DLTS). Although there are no differences in crystallinity and composition, the TA-treated solar cells exhibit significantly enhanced performance compared to pristine Sb2S3-sensitized solar cells. From DLTS analysis, the performance enhancement is mainly attributed to the extinction of trap sites, which are present at a density of (2–5) × 1014 cm−3 in Sb2S3, by TA treatment. Through such a simple treatment, the cell records an overall power conversion efficiency (PCE) of 7.5% through a metal mask under simulated illumination (AM 1.5G, 100 mW cm–2) with a very high open circuit voltage of 711.0 mV. This PCE is, thus far, the highest reported for fully solid-state chalcogenide-sensitized solar cells.

417 citations

Journal ArticleDOI
TL;DR: In this paper, a thermodynamically rigorous nonlinear elastic constitutive equation was derived for two-dimensional molybdenum disulfide, and the authors used first-principles density functional theory (DFT) calculations to predict the behavior of suspended monolayer MoS{}$ subjected to a spherical indenter load at finite strains in a multiple-length-scale finite element analysis model.
Abstract: This research explores the nonlinear elastic properties of two-dimensional molybdenum disulfide. We derive a thermodynamically rigorous nonlinear elastic constitutive equation and then calculate the nonlinear elastic response of two-dimensional MoS${}_{2}$ with first-principles density functional theory (DFT) calculations. The nonlinear elastic properties are used to predict the behavior of suspended monolayer MoS${}_{2}$ subjected to a spherical indenter load at finite strains in a multiple-length-scale finite element analysis model. The model is validated experimentally by indenting suspended circular MoS${}_{2}$ membranes with an atomic force microscope. We find that the two-dimensional Young's modulus and intrinsic strength of monolayer MoS${}_{2}$ are 130 and 16.5 N/m, respectively. The results approach Griffith's predicted intrinsic strength limit of ${\ensuremath{\sigma}}_{\mathrm{int}}\ensuremath{\sim}\frac{E}{9}$, where $E$ is the Young's modulus. This study reveals the predictive power of first-principles density functional theory in the derivation of nonlinear elastic properties of two-dimensional MoS${}_{2}$. Furthermore, the study bridges three main gaps that hinder understanding of material properties: DFT to finite element analysis, experimental results to DFT, and the nanoscale to the microscale. In bridging these three gaps, the experimental results validate the DFT calculations and the multiscale constitutive model.

417 citations

Journal ArticleDOI
TL;DR: In this paper, the thermal stability of graphite oxides to heat treatment under ambient argon gas was investigated using X-ray diffraction, and it was found that the interlayer distances dropped off in a stepwise manner by approximately 0.1nm in relation to the annealing time.

416 citations

Journal ArticleDOI
Adrian John Bevan1, B. Golob2, Th. Mannel3, S. Prell4  +2061 moreInstitutions (171)
TL;DR: The physics of the SLAC and KEK B Factories are described in this paper, with a brief description of the detectors, BaBar and Belle, and data taking related issues.
Abstract: This work is on the Physics of the B Factories. Part A of this book contains a brief description of the SLAC and KEK B Factories as well as their detectors, BaBar and Belle, and data taking related issues. Part B discusses tools and methods used by the experiments in order to obtain results. The results themselves can be found in Part C.

413 citations


Authors

Showing all 28506 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Hyun-Chul Kim1764076183227
Yongsun Kim1562588145619
David J. Mooney15669594172
Jongmin Lee1502257134772
Byung-Sik Hong1461557105696
Inkyu Park1441767109433
Y. Choi141163198709
Kazunori Kataoka13890870412
E. J. Corey136137784110
Pasi A. Jänne13668589488
Suyong Choi135149597053
Intae Yu134137289870
Tae Jeong Kim132142093959
Anders Hagfeldt12960079912
Network Information
Related Institutions (5)
Korea University
82.4K papers, 1.8M citations

98% related

Hanyang University
58.8K papers, 1.1M citations

98% related

Seoul National University
138.7K papers, 3.7M citations

97% related

Kyungpook National University
42.1K papers, 834.6K citations

97% related

Yonsei University
106.1K papers, 2.2M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023103
2022588
20214,342
20204,248
20194,124
20183,826