scispace - formally typeset
Search or ask a question

Showing papers by "Swedish University of Agricultural Sciences published in 2018"


Journal ArticleDOI
09 Aug 2018-Nature
TL;DR: It is shown that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance, and that the relative contributions of these microorganisms to global nutrient cycling varies spatially.
Abstract: Soils harbour some of the most diverse microbiomes on Earth and are essential for both nutrient cycling and carbon storage. To understand soil functioning, it is necessary to model the global distribution patterns and functional gene repertoires of soil microorganisms, as well as the biotic and environmental associations between the diversity and structure of both bacterial and fungal soil communities1–4. Here we show, by leveraging metagenomics and metabarcoding of global topsoil samples (189 sites, 7,560 subsamples), that bacterial, but not fungal, genetic diversity is highest in temperate habitats and that microbial gene composition varies more strongly with environmental variables than with geographic distance. We demonstrate that fungi and bacteria show global niche differentiation that is associated with contrasting diversity responses to precipitation and soil pH. Furthermore, we provide evidence for strong bacterial–fungal antagonism, inferred from antibiotic-resistance genes, in topsoil and ocean habitats, indicating the substantial role of biotic interactions in shaping microbial communities. Our results suggest that both competition and environmental filtering affect the abundance, composition and encoded gene functions of bacterial and fungal communities, indicating that the relative contributions of these microorganisms to global nutrient cycling varies spatially.

1,108 citations


Journal ArticleDOI
TL;DR: It is shown in grassland mesocosms that drought promotes destabilising properties in soil bacterial, but not fungal, co-occurrence networks, and that changes in bacterial communities link more strongly to soil functioning during recovery than do changes in fungal communities.
Abstract: Soil microbial communities play a crucial role in ecosystem functioning, but it is unknown how co-occurrence networks within these communities respond to disturbances such as climate extremes This represents an important knowledge gap because changes in microbial networks could have implications for their functioning and vulnerability to future disturbances Here, we show in grassland mesocosms that drought promotes destabilising properties in soil bacterial, but not fungal, co-occurrence networks, and that changes in bacterial communities link more strongly to soil functioning during recovery than do changes in fungal communities Moreover, we reveal that drought has a prolonged effect on bacterial communities and their co-occurrence networks via changes in vegetation composition and resultant reductions in soil moisture Our results provide new insight in the mechanisms through which drought alters soil microbial communities with potential long-term consequences, including future plant community composition and the ability of aboveground and belowground communities to withstand future disturbances

804 citations


Journal ArticleDOI
TL;DR: A critical perspective on published studies of MP ingestion by aquatic biota is provided and there are significant mismatches between the types of MP most commonly found in the environment or reported in field studies and those used in laboratory experiments.

802 citations


Journal ArticleDOI
Marlee A. Tucker1, Katrin Böhning-Gaese1, William F. Fagan2, John M. Fryxell3, Bram Van Moorter, Susan C. Alberts4, Abdullahi H. Ali, Andrew M. Allen5, Andrew M. Allen6, Nina Attias7, Tal Avgar8, Hattie L. A. Bartlam-Brooks9, Buuveibaatar Bayarbaatar10, Jerrold L. Belant11, Alessandra Bertassoni12, Dean E. Beyer13, Laura R. Bidner14, Floris M. van Beest15, Stephen Blake10, Stephen Blake16, Niels Blaum17, Chloe Bracis1, Danielle D. Brown18, P J Nico de Bruyn19, Francesca Cagnacci20, Francesca Cagnacci21, Justin M. Calabrese22, Justin M. Calabrese2, Constança Camilo-Alves23, Simon Chamaillé-Jammes24, André Chiaradia25, André Chiaradia26, Sarah C. Davidson27, Sarah C. Davidson16, Todd E. Dennis28, Stephen DeStefano29, Duane R. Diefenbach30, Iain Douglas-Hamilton31, Iain Douglas-Hamilton32, Julian Fennessy, Claudia Fichtel33, Wolfgang Fiedler16, Christina Fischer34, Ilya R. Fischhoff35, Christen H. Fleming22, Christen H. Fleming2, Adam T. Ford36, Susanne A. Fritz1, Benedikt Gehr37, Jacob R. Goheen38, Eliezer Gurarie39, Eliezer Gurarie2, Mark Hebblewhite40, Marco Heurich41, Marco Heurich42, A. J. Mark Hewison43, Christian Hof, Edward Hurme2, Lynne A. Isbell14, René Janssen, Florian Jeltsch17, Petra Kaczensky44, Adam Kane45, Peter M. Kappeler33, Matthew J. Kauffman38, Roland Kays46, Roland Kays47, Duncan M. Kimuyu48, Flávia Koch49, Flávia Koch33, Bart Kranstauber37, Scott D. LaPoint16, Scott D. LaPoint50, Peter Leimgruber22, John D. C. Linnell, Pascual López-López51, A. Catherine Markham52, Jenny Mattisson, Emília Patrícia Medici53, Ugo Mellone54, Evelyn H. Merrill8, Guilherme Miranda de Mourão55, Ronaldo Gonçalves Morato, Nicolas Morellet43, Thomas A. Morrison56, Samuel L. Díaz-Muñoz14, Samuel L. Díaz-Muñoz57, Atle Mysterud58, Dejid Nandintsetseg1, Ran Nathan59, Aidin Niamir, John Odden, Robert B. O'Hara60, Luiz Gustavo R. Oliveira-Santos7, Kirk A. Olson10, Bruce D. Patterson61, Rogério Cunha de Paula, Luca Pedrotti, Björn Reineking62, Björn Reineking63, Martin Rimmler, Tracey L. Rogers64, Christer Moe Rolandsen, Christopher S. Rosenberry65, Daniel I. Rubenstein66, Kamran Safi16, Kamran Safi67, Sonia Saïd, Nir Sapir68, Hall Sawyer, Niels Martin Schmidt15, Nuria Selva69, Agnieszka Sergiel69, Enkhtuvshin Shiilegdamba10, João P. Silva70, João P. Silva71, João P. Silva72, Navinder J. Singh6, Erling Johan Solberg, Orr Spiegel14, Olav Strand, Siva R. Sundaresan, Wiebke Ullmann17, Ulrich Voigt44, Jake Wall31, David W. Wattles29, Martin Wikelski16, Martin Wikelski67, Christopher C. Wilmers73, John W. Wilson74, George Wittemyer31, George Wittemyer75, Filip Zięba, Tomasz Zwijacz-Kozica, Thomas Mueller1, Thomas Mueller22 
Goethe University Frankfurt1, University of Maryland, College Park2, University of Guelph3, Duke University4, Radboud University Nijmegen5, Swedish University of Agricultural Sciences6, Federal University of Mato Grosso do Sul7, University of Alberta8, Royal Veterinary College9, Wildlife Conservation Society10, Mississippi State University11, Sao Paulo State University12, Michigan Department of Natural Resources13, University of California, Davis14, Aarhus University15, Max Planck Society16, University of Potsdam17, Middle Tennessee State University18, Mammal Research Institute19, Harvard University20, Edmund Mach Foundation21, Smithsonian Conservation Biology Institute22, University of Évora23, University of Montpellier24, Monash University25, Parks Victoria26, Ohio State University27, Fiji National University28, University of Massachusetts Amherst29, United States Geological Survey30, Save the Elephants31, University of Oxford32, German Primate Center33, Technische Universität München34, Institute of Ecosystem Studies35, University of British Columbia36, University of Zurich37, University of Wyoming38, University of Washington39, University of Montana40, University of Freiburg41, Bavarian Forest National Park42, University of Toulouse43, University of Veterinary Medicine Vienna44, University College Cork45, North Carolina Museum of Natural Sciences46, North Carolina State University47, Karatina University48, University of Lethbridge49, Lamont–Doherty Earth Observatory50, University of Valencia51, Stony Brook University52, International Union for Conservation of Nature and Natural Resources53, University of Alicante54, Empresa Brasileira de Pesquisa Agropecuária55, University of Glasgow56, New York University57, University of Oslo58, Hebrew University of Jerusalem59, Norwegian University of Science and Technology60, Field Museum of Natural History61, University of Bayreuth62, University of Grenoble63, University of New South Wales64, Pennsylvania Game Commission65, Princeton University66, University of Konstanz67, University of Haifa68, Polish Academy of Sciences69, University of Lisbon70, Instituto Superior de Agronomia71, University of Porto72, University of California, Santa Cruz73, University of Pretoria74, Colorado State University75
26 Jan 2018-Science
TL;DR: Using a unique GPS-tracking database of 803 individuals across 57 species, it is found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in area with a low human footprint.
Abstract: Animal movement is fundamental for ecosystem functioning and species survival, yet the effects of the anthropogenic footprint on animal movements have not been estimated across species. Using a unique GPS-tracking database of 803 individuals across 57 species, we found that movements of mammals in areas with a comparatively high human footprint were on average one-half to one-third the extent of their movements in areas with a low human footprint. We attribute this reduction to behavioral changes of individual animals and to the exclusion of species with long-range movements from areas with higher human impact. Global loss of vagility alters a key ecological trait of animals that affects not only population persistence but also ecosystem processes such as predator-prey interactions, nutrient cycling, and disease transmission.

719 citations


Journal ArticleDOI
TL;DR: It is argued that maintaining and, where possible, restoring the integrity of dwindling intact forests is an urgent priority for current global efforts to halt the ongoing biodiversity crisis, slow rapid climate change and achieve sustainability goals.
Abstract: As the terrestrial human footprint continues to expand, the amount of native forest that is free from significant damaging human activities is in precipitous decline. There is emerging evidence that the remaining intact forest supports an exceptional confluence of globally significant environmental values relative to degraded forests, including imperilled biodiversity, carbon sequestration and storage, water provision, indigenous culture and the maintenance of human health. Here we argue that maintaining and, where possible, restoring the integrity of dwindling intact forests is an urgent priority for current global efforts to halt the ongoing biodiversity crisis, slow rapid climate change and achieve sustainability goals. Retaining the integrity of intact forest ecosystems should be a central component of proactive global and national environmental strategies, alongside current efforts aimed at halting deforestation and promoting reforestation.

597 citations


Journal ArticleDOI
TL;DR: Recent achievements in the field of nano-ecotoxicology in both aquatic and terrestrial systems are highlighted but also substantial gaps that require further attention in the future are referred to.
Abstract: Nanoparticles serve various industrial and domestic purposes which is reflected in their steadily increasing production volume. This economic success comes along with their presence in the environment and the risk of potentially adverse effects in natural systems. Over the last decade, substantial progress regarding the understanding of sources, fate, and effects of nanoparticles has been made. Predictions of environmental concentrations based on modelling approaches could recently be confirmed by measured concentrations in the field. Nonetheless, analytical techniques are, as covered elsewhere, still under development to more efficiently and reliably characterize and quantify nanoparticles, as well as to detect them in complex environmental matrixes. Simultaneously, the effects of nanoparticles on aquatic and terrestrial systems have received increasing attention. While the debate on the relevance of nanoparticle-released metal ions for their toxicity is still ongoing, it is a re-occurring phenomenon that inert nanoparticles are able to interact with biota through physical pathways such as biological surface coating. This among others interferes with the growth and behaviour of exposed organisms. Moreover, co-occurring contaminants interact with nanoparticles. There is multiple evidence suggesting nanoparticles as a sink for organic and inorganic co-contaminants. On the other hand, in the presence of nanoparticles, repeatedly an elevated effect on the test species induced by the co-contaminants has been reported. In this paper, we highlight recent achievements in the field of nano-ecotoxicology in both aquatic and terrestrial systems but also refer to substantial gaps that require further attention in the future.

529 citations


Journal ArticleDOI
TL;DR: An overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring is provided in order to identify future directions, applications, developments, and challenges.
Abstract: Environmental monitoring plays a central role in diagnosing climate and management impacts on natural and agricultural systems; enhancing the understanding of hydrological processes; optimizing the allocation and distribution of water resources; and assessing, forecasting, and even preventing natural disasters. Nowadays, most monitoring and data collection systems are based upon a combination of ground-based measurements, manned airborne sensors, and satellite observations. These data are utilized in describing both small- and large-scale processes, but have spatiotemporal constraints inherent to each respective collection system. Bridging the unique spatial and temporal divides that limit current monitoring platforms is key to improving our understanding of environmental systems. In this context, Unmanned Aerial Systems (UAS) have considerable potential to radically improve environmental monitoring. UAS-mounted sensors offer an extraordinary opportunity to bridge the existing gap between field observations and traditional air- and space-borne remote sensing, by providing high spatial detail over relatively large areas in a cost-effective way and an entirely new capacity for enhanced temporal retrieval. As well as showcasing recent advances in the field, there is also a need to identify and understand the potential limitations of UAS technology. For these platforms to reach their monitoring potential, a wide spectrum of unresolved issues and application-specific challenges require focused community attention. Indeed, to leverage the full potential of UAS-based approaches, sensing technologies, measurement protocols, postprocessing techniques, retrieval algorithms, and evaluation techniques need to be harmonized. The aim of this paper is to provide an overview of the existing research and applications of UAS in natural and agricultural ecosystem monitoring in order to identify future directions, applications, developments, and challenges.

442 citations


Journal ArticleDOI
TL;DR: Research indicates that these products are improving aerobic stability, but feeding studies are not yet sufficient to make conclusions about effects on animal performance, so future silage additives are expected to directly inhibit clostridia and other detrimental microorganisms, mitigate high mycotoxin levels on harvested forages during ensiling.

423 citations


Journal ArticleDOI
TL;DR: Analysis of the largest pest-control database of its kind shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others.
Abstract: The idea that noncrop habitat enhances pest control and represents a win-win opportunity to conserve biodiversity and bolster yields has emerged as an agroecological paradigm. However, while noncrop habitat in landscapes surrounding farms sometimes benefits pest predators, natural enemy responses remain heterogeneous across studies and effects on pests are inconclusive. The observed heterogeneity in species responses to noncrop habitat may be biological in origin or could result from variation in how habitat and biocontrol are measured. Here, we use a pest-control database encompassing 132 studies and 6,759 sites worldwide to model natural enemy and pest abundances, predation rates, and crop damage as a function of landscape composition. Our results showed that although landscape composition explained significant variation within studies, pest and enemy abundances, predation rates, crop damage, and yields each exhibited different responses across studies, sometimes increasing and sometimes decreasing in landscapes with more noncrop habitat but overall showing no consistent trend. Thus, models that used landscape-composition variables to predict pest-control dynamics demonstrated little potential to explain variation across studies, though prediction did improve when comparing studies with similar crop and landscape features. Overall, our work shows that surrounding noncrop habitat does not consistently improve pest management, meaning habitat conservation may bolster production in some systems and depress yields in others. Future efforts to develop tools that inform farmers when habitat conservation truly represents a win-win would benefit from increased understanding of how landscape effects are modulated by local farm management and the biology of pests and their enemies.

398 citations


Journal ArticleDOI
TL;DR: Restoring peatlands is 3.4 times less nitrogen costly and involves a much smaller land area demand than mineral soil carbon sequestration, calling for a stronger consideration of peatland rehabilitation as a mitigation measure.
Abstract: Soil carbon sequestration and avoidable emissions through peatland restoration are both strategies to tackle climate change. Here we compare their potential and environmental costs regarding nitrogen and land demand. In the event that no further areas are exploited, drained peatlands will cumulatively release 80.8 Gt carbon and 2.3 Gt nitrogen. This corresponds to a contemporary annual greenhouse gas emission of 1.91 (0.31–3.38) Gt CO2-eq. that could be saved with peatland restoration. Soil carbon sequestration on all agricultural land has comparable mitigation potential. However, additional nitrogen is needed to build up a similar carbon pool in organic matter of mineral soils, equivalent to 30–80% of the global fertilizer nitrogen application annually. Restoring peatlands is 3.4 times less nitrogen costly and involves a much smaller land area demand than mineral soil carbon sequestration, calling for a stronger consideration of peatland rehabilitation as a mitigation measure.

382 citations


Journal ArticleDOI
TL;DR: Of high importance is the identification of a widely applicable set of transferability metrics, with appropriate tools to quantify the sources and impacts of prediction uncertainty under novel conditions.
Abstract: Predictive models are central to many scientific disciplines and vital for informing management in a rapidly changing world However, limited understanding of the accuracy and precision of models transferred to novel conditions (their ‘transferability’) undermines confidence in their predictions Here, 50 experts identified priority knowledge gaps which, if filled, will most improve model transfers These are summarized into six technical and six fundamental challenges, which underlie the combined need to intensify research on the determinants of ecological predictability, including species traits and data quality, and develop best practices for transferring models Of high importance is the identification of a widely applicable set of transferability metrics, with appropriate tools to quantify the sources and impacts of prediction uncertainty under novel conditions

Journal ArticleDOI
TL;DR: The recent advances about fundamental understanding of the genomics, physiology, and ecology of N2O reducers and the importance of these findings for curbing N 2O emissions are reviewed.

Journal ArticleDOI
TL;DR: The main advantages and pitfalls of metabarcoding approaches to assess parameters such as richness, abundance, taxonomic composition and species ecological values, to be used for calculation of biotic indices are discussed.

Journal ArticleDOI
12 Jan 2018-Science
TL;DR: An immigrant Darwin’s finch to Daphne Major in the Galápagos archipelago initiated a new genetic lineage by breeding with a resident finch (Geospiza fortis), which demonstrates a process known as homoploid hybrid speciation in action.
Abstract: Homoploid hybrid speciation in animals has been inferred frequently from patterns of variation, but few examples have withstood critical scrutiny. Here we report a directly documented example, from its origin to reproductive isolation. An immigrant Darwin’s finch to Daphne Major in the Galapagos archipelago initiated a new genetic lineage by breeding with a resident finch ( Geospiza fortis ). Genome sequencing of the immigrant identified it as a G. conirostris male that originated on Espanola >100 kilometers from Daphne Major. From the second generation onward, the lineage bred endogamously and, despite intense inbreeding, was ecologically successful and showed transgressive segregation of bill morphology. This example shows that reproductive isolation, which typically develops over hundreds of generations, can be established in only three.

Journal ArticleDOI
TL;DR: It is argued that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems.
Abstract: Coastal global oceans are expected to undergo drastic changes driven by climate change and increasing anthropogenic pressures in coming decades. Predicting specific future conditions and assessing the best management strategies to maintain ecosystem integrity and sustainable resource use are difficult, because of multiple interacting pressures, uncertain projections, and a lack of test cases for management. We argue that the Baltic Sea can serve as a time machine to study consequences and mitigation of future coastal perturbations, due to its unique combination of an early history of multistressor disturbance and ecosystem deterioration and early implementation of cross-border environmental management to address these problems. The Baltic Sea also stands out in providing a strong scientific foundation and accessibility to long-term data series that provide a unique opportunity to assess the efficacy of management actions to address the breakdown of ecosystem functions. Trend reversals such as the return of top predators, recovering fish stocks, and reduced input of nutrient and harmful substances could be achieved only by implementing an international, cooperative governance structure transcending its complex multistate policy setting, with integrated management of watershed and sea. The Baltic Sea also demonstrates how rapidly progressing global pressures, particularly warming of Baltic waters and the surrounding catchment area, can offset the efficacy of current management approaches. This situation calls for management that is (i) conservative to provide a buffer against regionally unmanageable global perturbations, (ii) adaptive to react to new management challenges, and, ultimately, (iii) multisectorial and integrative to address conflicts associated with economic trade-offs.

Journal ArticleDOI
TL;DR: This work has implemented a DNA-free genome editing method, using delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to potato protoplasts, by targeting the gene encoding a granule bound starch synthase (GBSS, EC 2.4.1.242).
Abstract: Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein-9 (CRISPR-Cas9) can be used as an efficient tool for genome editing in potato (Solanum tuberosum). From both a scientific and a regulatory perspective, it is beneficial if integration of DNA in the potato genome is avoided. We have implemented a DNA-free genome editing method, using delivery of CRISPR-Cas9 ribonucleoproteins (RNPs) to potato protoplasts, by targeting the gene encoding a granule bound starch synthase (GBSS, EC 2.4.1.242). The RNP method was directly implemented using previously developed protoplast isolation, transfection and regeneration protocols without further adjustments. Cas9 protein was preassembled with RNA produced either synthetically or by in vitro transcription. RNP with synthetically produced RNA (cr-RNP) induced mutations, i.e. indels, at a frequency of up to 9%, with all mutated lines being transgene-free. A mutagenesis frequency of 25% of all regenerated shoots was found when using RNP with in vitro transcriptionally produced RNA (IVT-RNP). However, more than 80% of the shoots with confirmed mutations had unintended inserts in the cut site, which was in the same range as when using DNA delivery. The inserts originated both from DNA template remnants from the in vitro transcription, and from chromosomal potato DNA. In 2-3% of the regenerated shoots from the RNP-experiments, mutations were induced in all four alleles resulting in a complete knockout of the GBSS enzyme function.

Journal ArticleDOI
TL;DR: The findings show that there have been shifts in the timing of interacting species in recent decades; the next challenges are to improve the ability to predict the direction of change and understand the full consequences for communities and ecosystems.
Abstract: Phenological responses to climate change (e.g., earlier leaf-out or egg hatch date) are now well documented and clearly linked to rising temperatures in recent decades. Such shifts in the phenologies of interacting species may lead to shifts in their synchrony, with cascading community and ecosystem consequences. To date, single-system studies have provided no clear picture, either finding synchrony shifts may be extremely prevalent [Mayor SJ, et al. (2017) Sci Rep 7:1902] or relatively uncommon [Iler AM, et al. (2013) Glob Chang Biol 19:2348–2359], suggesting that shifts toward asynchrony may be infrequent. A meta-analytic approach would provide insights into global trends and how they are linked to climate change. We compared phenological shifts among pairwise species interactions (e.g., predator–prey) using published long-term time-series data of phenological events from aquatic and terrestrial ecosystems across four continents since 1951 to determine whether recent climate change has led to overall shifts in synchrony. We show that the relative timing of key life cycle events of interacting species has changed significantly over the past 35 years. Further, by comparing the period before major climate change (pre-1980s) and after, we show that estimated changes in phenology and synchrony are greater in recent decades. However, there has been no consistent trend in the direction of these changes. Our findings show that there have been shifts in the timing of interacting species in recent decades; the next challenges are to improve our ability to predict the direction of change and understand the full consequences for communities and ecosystems.

Journal ArticleDOI
TL;DR: The results suggest that salvage logging is not consistent with the management objectives of protected areas, and substantial changes, such as the retention of dead wood in naturally disturbed forests, are needed to support biodiversity.
Abstract: Logging to "salvage" economic returns from forests affected by natural disturbances has become increasingly prevalent globally Despite potential negative effects on biodiversity, salvage logging is often conducted, even in areas otherwise excluded from logging and reserved for nature conservation, inter alia because strategic priorities for post-disturbance management are widely lackingA review of the existing literature revealed that most studies investigating the effects of salvage logging on biodiversity have been conducted less than 5 years following natural disturbances, and focused on non-saproxylic organismsA meta-analysis across 24 species groups revealed that salvage logging significantly decreases numbers of species of eight taxonomic groups Richness of dead wood dependent taxa (ie saproxylic organisms) decreased more strongly than richness of non-saproxylic taxa In contrast, taxonomic groups typically associated with open habitats increased in the number of species after salvage loggingBy analysing 134 original species abundance matrices, we demonstrate that salvage logging significantly alters community composition in 7 of 17 species groups, particularly affecting saproxylic assemblagesSynthesis and applications Our results suggest that salvage logging is not consistent with the management objectives of protected areas Substantial changes, such as the retention of dead wood in naturally disturbed forests, are needed to support biodiversity Future research should investigate the amount and spatio-temporal distribution of retained dead wood needed to maintain all components of biodiversity


Journal ArticleDOI
TL;DR: This update elucidates the connection between hormonal signaling and cell wall synthesis and deposition and analyzes downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins.
Abstract: Plant cells are surrounded by cell walls, which are dynamic structures displaying a strictly regulated balance between rigidity and flexibility. Walls are fairly rigid to provide support and protection, but also extensible, to allow cell growth, which is triggered by a high intracellular turgor pressure. Wall properties regulate the differential growth of the cell, resulting in a diversity of cell sizes and shapes. The plant hormone auxin is well known to stimulate cell elongation via increasing wall extensibility. Auxin participates in the regulation of cell wall properties by inducing wall loosening. Here, we review what is known on cell wall property regulation by auxin. We focus particularly on the auxin role during cell expansion linked directly to cell wall modifications. We also analyze downstream targets of transcriptional auxin signaling, which are related to the cell wall and could be linked to acid growth and the action of wall-loosening proteins. All together, this update elucidates the connection between hormonal signaling and cell wall synthesis and deposition.

Journal ArticleDOI
13 Apr 2018-Science
TL;DR: It is shown, in hybrid aspen trees, that photoperiodic regulation of dormancy is mechanistically distinct from autumnal growth cessation, and precocious growth is disallowed during dormancy.
Abstract: In temperate and boreal ecosystems, seasonal cycles of growth and dormancy allow perennial plants to adapt to winter conditions. We show, in hybrid aspen trees, that photoperiodic regulation of dormancy is mechanistically distinct from autumnal growth cessation. Dormancy sets in when symplastic intercellular communication through plasmodesmata is blocked by a process dependent on the phytohormone abscisic acid. The communication blockage prevents growth-promoting signals from accessing the meristem. Thus, precocious growth is disallowed during dormancy. The dormant period, which supports robust survival of the aspen tree in winter, is due to loss of access to growth-promoting signals.

Journal ArticleDOI
TL;DR: The main objectives of this benchmarking study are to evaluate the potential of applying TLS in characterizing forests, to clarify the strengths and the weaknesses of TLS as a measure of forest digitization, and to reveal the capability of recent algorithms for tree-attribute extraction.
Abstract: The last two decades have witnessed increasing awareness of the potential of terrestrial laser scanning (TLS) in forest applications in both public and commercial sectors, along with tremendous research efforts and progress. It is time to inspect the achievements of and the remaining barriers to TLS-based forest investigations, so further research and application are clearly orientated in operational uses of TLS. In such context, the international TLS benchmarking project was launched in 2014 by the European Spatial Data Research Organization and coordinated by the Finnish Geospatial Research Institute. The main objectives of this benchmarking study are to evaluate the potential of applying TLS in characterizing forests, to clarify the strengths and the weaknesses of TLS as a measure of forest digitization, and to reveal the capability of recent algorithms for tree-attribute extraction. The project is designed to benchmark the TLS algorithms by processing identical TLS datasets for a standardized set of forest attribute criteria and by evaluating the results through a common procedure respecting reliable references. Benchmarking results reflect large variances in estimating accuracies, which were unveiled through the 18 compared algorithms and through the evaluation framework, i.e., forest complexity categories, TLS data acquisition approaches, tree attributes and evaluation procedures. The evaluation framework includes three new criteria proposed in this benchmarking and the algorithm performances are investigated through combining two or more criteria (e.g., the accuracy of the individual tree attributes are inspected in conjunction with plot-level completeness) in order to reveal algorithms’ overall performance. The results also reveal some best available forest attribute estimates at this time, which clarify the status quo of TLS-based forest investigations. Some results are well expected, while some are new, e.g., the variances of estimating accuracies between single-/multi-scan, the principle of the algorithm designs and the possibility of a computer outperforming human operation. With single-scan data, i.e., one hemispherical scan per plot, most of the recent algorithms are capable of achieving stem detection with approximately 75% completeness and 90% correctness in the easy forest stands (easy plots: 600 stems/ha, 20 cm mean DBH). The detection rate decreases when the stem density increases and the average DBH decreases, i.e., 60% completeness with 90% correctness (medium plots: 1000 stem/ha, 15 cm mean DBH) and 30% completeness with 90% correctness (difficult plots: 2000 stems/ha, 10 cm mean DBH). The application of the multi-scan approach, i.e., five scans per plot at the center and four quadrant angles, is more effective in complex stands, increasing the completeness to approximately 90% for medium plots and to approximately 70% for difficult plots, with almost 100% correctness. The results of this benchmarking also show that the TLS-based approaches can provide the estimates of the DBH and the stem curve at a 1–2 cm accuracy that are close to what is required in practical applications, e.g., national forest inventories (NFIs). In terms of algorithm development, a high level of automation is a commonly shared standard, but a bottleneck occurs at stem detection and tree height estimation, especially in multilayer and dense forest stands. The greatest challenge is that even with the multi-scan approach, it is still hard to completely and accurately record stems of all trees in a plot due to the occlusion effects of the trees and bushes in forests. Future development must address the redundant yet incomplete point clouds of forest sample plots and recognize trees more accurately and efficiently. It is worth noting that TLS currently provides the best quality terrestrial point clouds in comparison with all other technologies, meaning that all the benchmarks labeled in this paper can also serve as a reference for other terrestrial point clouds sources.

Journal ArticleDOI
TL;DR: This work presents a method for the simultaneous targeted profiling of 101 phytohormone-related analytes from minute amounts of fresh plant material, and validated this hormonomic approach in salt-stressed and control Arabidopsis (Arabidopsis thaliana) seedlings.
Abstract: Phytohormones are physiologically important small molecules that play essential roles in intricate signaling networks that regulate diverse processes in plants. We present a method for the simultaneous targeted profiling of 101 phytohormone-related analytes from minute amounts of fresh plant material (less than 20 mg). Rapid and nonselective extraction, fast one-step sample purification, and extremely sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry enable concurrent quantification of the main phytohormone classes: cytokinins, auxins, brassinosteroids, gibberellins, jasmonates, salicylates, and abscisates. We validated this hormonomic approach in salt-stressed and control Arabidopsis (Arabidopsis thaliana) seedlings, quantifying a total of 43 endogenous compounds in both root and shoot samples. Subsequent multivariate statistical data processing and cross-validation with transcriptomic data highlighted the main hormone metabolites involved in plant adaptation to salt stress.

Journal ArticleDOI
TL;DR: In this article, R.J.W. and I.M.D. were funded by Natural England and by NERC grant NE/L00268X/1 to investigate the effect of noise levels on the performance of an underwater robot.
Abstract: The work was funded by Natural England and by NERC grant NE/L00268X/1 to R.J.W. and I.M.D.M.

Journal ArticleDOI
TL;DR: It is concluded that global change in northern regions leads not only to reduced primary productivity but also to nutritionally poorer lake food webs, with discernible consequences for the trophic web to fish and humans.
Abstract: Northern ecosystems are experiencing some of the most dramatic impacts of global change on Earth. Rising temperatures, hydrological intensification, changes in atmospheric acid deposition and assoc ...

Journal ArticleDOI
TL;DR: The Commentary by Portner, Bock and Mark elaborates on the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis.
Abstract: The Commentary by Portner, Bock and Mark ([Portner et al., 2017][1]) elaborates on the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis. Journal of Experimental Biology Commentaries allow for personal and controversial views, yet the journal also mandates that ‘opinion and fact

Journal ArticleDOI
TL;DR: Advances in computational tools, high-throughput sequencing technologies and cultivation-independent “omics” approaches continue to revolutionize the understanding of the rumen microbiome, which will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.
Abstract: The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security As the world population is predicted to reach approximately 97 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in "omic" data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies Advances in computational tools, high-throughput sequencing technologies and cultivation-independent "omics" approaches continue to revolutionize our understanding of the rumen microbiome This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges

Journal ArticleDOI
03 Apr 2018
TL;DR: The present review aims to give a concise review about important nutrients from fish and their impact on human health, and possible effects of rearing system and feeding on the most vulnerable group of nutrients, the lipids are summarized.
Abstract: The present review aims to give a concise review about important nutrients from fish and their impact on human health. In addition, possible effects of rearing system and feeding on the most vulner...

Journal ArticleDOI
TL;DR: It is demonstrated that livestock raised under the circular economy concept could provide a significant, nonnegligible part of the authors' daily protein needs and that including some ASF in the human diet could free up about one quarter of global arable land.
Abstract: The need for more sustainable production and consumption of animal source food (ASF) is central to the achievement of the sustainable development goals: within this context, wise use of land is a core challenge and concern. A key question in feeding the future world is: how much ASF should we eat? We demonstrate that livestock raised under the circular economy concept could provide a significant, nonnegligible part (9-23 g/per capita) of our daily protein needs (~50-60 g/per capita). This livestock then would not consume human-edible biomass, such as grains, but mainly convert leftovers from arable land and grass resources into valuable food, implying that production of livestock feed is largely decoupled from arable land. The availability of these biomass streams for livestock then determines the boundaries for livestock production and consumption. Under this concept, the competition for land for feed or food would be minimized and compared to no ASF, including some ASF in the human diet could free up about one quarter of global arable land. Our results also demonstrate that restricted growth in consumption of ASF in Africa and Asia would be feasible under these boundary conditions, while reductions in the rest of the world would be necessary to meet land use sustainability criteria. Managing this expansion and contraction of future consumption of ASF is essential for achieving sustainable nutrition security.

Journal ArticleDOI
TL;DR: It was concluded that the structure of the lignin had an impact on its reactivity during the activation reaction, and consequently affected the properties of the final hybrid materials.
Abstract: The development of advanced hybrid materials based on polymers from biorenewable sources and mineral nanoparticles is currently of high importance. In this paper, we applied softwood kraft lignins ...