scispace - formally typeset
Search or ask a question
Institution

Swedish University of Agricultural Sciences

EducationUppsala, Sweden
About: Swedish University of Agricultural Sciences is a education organization based out in Uppsala, Sweden. It is known for research contribution in the topics: Population & Soil water. The organization has 13510 authors who have published 35241 publications receiving 1414458 citations. The organization is also known as: Sveriges Lantbruksuniversitet & SLU.


Papers
More filters
Journal ArticleDOI
27 Aug 2015-PLOS ONE
TL;DR: It is suggested that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations as bees are increasingly facing multiple interacting pressures.
Abstract: It has been suggested that the widespread use of neonicotinoid insecticides threatens bees, but research on this topic has been surrounded by controversy. In order to synthesize which research approaches have been used to examine the effect of neonicotinoids on bees and to identify knowledge gaps, we systematically reviewed research on this subject that was available on the Web of Science and PubMed in June 2015. Most of the 216 primary research studies were conducted in Europe or North America (82%), involved the neonicotinoid imidacloprid (78%), and concerned the western honey bee Apis mellifera (75%). Thus, little seems to be known about neonicotinoids and bees in areas outside Europe and North America. Furthermore, because there is considerable variation in ecological traits among bee taxa, studies on honey bees are not likely to fully predict impacts of neonicotinoids on other species. Studies on crops were dominated by seed-treated maize, oilseed rape (canola) and sunflower, whereas less is known about potential side effects on bees from the use of other application methods on insect pollinated fruit and vegetable crops, or on lawns and ornamental plants. Laboratory approaches were most common, and we suggest that their capability to infer real-world consequences are improved when combined with information from field studies about realistic exposures to neonicotinoids. Studies using field approaches often examined only bee exposure to neonicotinoids and more field studies are needed that measure impacts of exposure. Most studies measured effects on individual bees. We suggest that effects on the individual bee should be linked to both mechanisms at the sub-individual level and also to the consequences for the colony and wider bee populations. As bees are increasingly facing multiple interacting pressures future research needs to clarify the role of neonicotinoids in relative to other drivers of bee declines.

237 citations

Journal ArticleDOI
TL;DR: This protocol provides a user-friendly pipeline and graphical user interface for data pre-processing and unmixing of pixel spectra into their contributing pure components by multivariate curve resolution–alternating least squares (MCR-ALS) analysis.
Abstract: Raman and Fourier transform IR (FTIR) microspectroscopic images of biological material (tissue sections) contain detailed information about their chemical composition. The challenge lies in identifying changes in chemical composition, as well as locating and assigning these changes to different conditions (pathology, anatomy, environmental or genetic factors). Multivariate data analysis techniques are ideal for decrypting such information from the data. This protocol provides a user-friendly pipeline and graphical user interface (GUI) for data pre-processing and unmixing of pixel spectra into their contributing pure components by multivariate curve resolution-alternating least squares (MCR-ALS) analysis. The analysis considers the full spectral profile in order to identify the chemical compounds and to visualize their distribution across the sample to categorize chemically distinct areas. Results are rapidly achieved (usually <30-60 min per image), and they are easy to interpret and evaluate both in terms of chemistry and biology, making the method generally more powerful than principal component analysis (PCA) or heat maps of single-band intensities. In addition, chemical and biological evaluation of the results by means of reference matching and segmentation maps (based on k-means clustering) is possible.

236 citations

Journal ArticleDOI
TL;DR: The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation, however, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development.
Abstract: In temperate regions the annual pattern of wood development is characterized by the formation of radially narrow and thick walled latewood cells. This takes place at the later part of the growing season when cambial cell division declines. To gain new insight into the regulation of this process, micro-analytical techniques were used to visualize the distribution of indole-3-acetic acid (IAA), soluble carbohydrates, and activities of sucrose (Suc)-metabolizing enzymes across the cambial region tissues in Scots pine (Pinus sylvestris). The total amount of IAA in the cambial region did not change with latewood initiation. But its radial distribution pattern was altered, resulting in an increased concentration in the cambial meristem and its recent derivatives. Thus, initiation of latewood formation and cessation of cambial cell division is not a consequence of decreased IAA concentrations in dividing and expanding cells. Rather, IAA most likely has a role in defining the altered developmental pattern associated with latewood formation. Carbohydrates and enzyme activities showed distinctive radial distribution patterns. Suc peaked in the phloem and decreased sharply to low levels across the cambial zone, whereas fructose and glucose reached their highest levels in the maturing tracheids. Suc synthase was the dominating Suc cleaving enzyme with a peak in the secondary wall-forming tracheids and in the phloem. Soluble acid invertase peaked in dividing and expanding cells. Suc-phosphate synthase had its highest activities in the phloem. Activities of cell wall bound invertase were low. The absence of major seasonal variations indicates that carbohydrate availability is not a trigger for latewood initiation. However, steep concentration gradients of the sugars suggest a role for sugar signaling in vascular development.

236 citations

Journal ArticleDOI
TL;DR: Analysis of PttLAX and PttPIN expression suggests that specific positions in a concentration gradient of the hormone are associated with different stages of vascular cambium development and expression of specific members of the auxin transport gene families.
Abstract: Recent research has highlighted the importance of auxin concentration gradients during plant development. Establishment of these gradients is believed to involve polar auxin transport through specialized carrier proteins. We have used an experimental system, the wood-forming tissue of hybrid aspen, which allows tissue-specific expression analysis of auxin carrier genes and quantification of endogenous concentrations of the hormone. As part of this study, we isolated the putative polar auxin transport genes, PttLAX1-PttLAX3 and PttPIN1-PttPIN3, belonging to the AUX1-like family of influx and PIN1-like efflux carriers, respectively. Analysis of PttLAX and PttPIN expression suggests that specific positions in a concentration gradient of the hormone are associated with different stages of vascular cambium development and expression of specific members of the auxin transport gene families. We were also able demonstrate positive feedback of auxin on polar auxin transport genes. Entry into dormancy at the end of a growing season leads to a loss of auxin transport capacity, paralleled by reduced expression of PttLAX and PttPIN genes. Furthermore, data from field experiments show that production of the molecular components of the auxin transport machinery is governed by environmental controls. Our findings collectively demonstrate that trees have developed mechanisms to modulate auxin transport in the vascular meristem in response to developmental and environmental cues.

236 citations

Journal ArticleDOI
TL;DR: In this paper, the contribution of atmospheric nitrogen (N) deposition versus other ecological drivers on forest understorey plant communities by combining a temporal and spatial approach was assessed by combining data from 1205 (semi-permanent vegetation plots taken from 23 rigorously selected under-storey resurvey studies along a large deposition gradient across deciduous temperate forest in Europe.
Abstract: 1. Atmospheric nitrogen (N) deposition is expected to change forest understorey plant community composition and diversity, but results of experimental addition studies and observational studies are not yet conclusive. A shortcoming of observational studies, which are generally based on resurveys or sampling along large deposition gradients, is the occurrence of temporal or spatial confounding factors. 2. We were able to assess the contribution of N deposition versus other ecological drivers on forest understorey plant communities by combining a temporal and spatial approach. Data from 1205 (semi-)permanent vegetation plots taken from 23 rigorously selected understorey resurvey studies along a large deposition gradient across deciduous temperate forest in Europe were compiled and related to various local and regional driving factors, including the rate of atmospheric N deposition, the change in large herbivore densities and the change in canopy cover and composition. 3. Although no directional change in species richness occurred, there was considerable floristic turnover in the understorey plant community and a shift in species composition towards more shade-tolerant and nutrient-demanding species. However, atmospheric N deposition was not important in explaining the observed eutrophication signal. This signal seemed mainly related to a shift towards a denser canopy cover and a changed canopy species composition with a higher share of species with more easily decomposed litter. 4. Synthesis. Our multi-site approach clearly demonstrates that one should be cautious when drawing conclusions about the impact of atmospheric N deposition based on the interpretation of plant community shifts in single sites or regions due to other, concurrent, ecological changes. Even though the effects of chronically increased N deposition on the forest plant communities are apparently obscured by the effects of canopy changes, the accumulated N might still have a significant impact. However, more research is needed to assess whether this N time bomb will indeed explode when canopies will open up again.

236 citations


Authors

Showing all 13653 results

NameH-indexPapersCitations
Svante Pääbo14740784489
Lars Klareskog13169763281
Stephen Hillier129113883831
Carol V. Robinson12367051896
Jun Yu121117481186
Peter J. Anderson12096663635
David E. Clapham11938258360
Angela M. Gronenborn11356844800
David A. Wardle11040970547
Agneta Oskarsson10676640524
Jack S. Remington10348138006
Hans Ellegren10234939437
Per A. Peterson10235635788
Malcolm J. Bennett9943937207
Gunnar E. Carlsson9846632638
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

92% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

92% related

University of Guelph
50.5K papers, 1.7M citations

88% related

United States Forest Service
21.8K papers, 959.1K citations

87% related

Agriculture and Agri-Food Canada
21.3K papers, 748.1K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023116
2022252
20212,311
20201,957
20191,787
20181,624