scispace - formally typeset
Search or ask a question
Institution

Swedish University of Agricultural Sciences

EducationUppsala, Sweden
About: Swedish University of Agricultural Sciences is a education organization based out in Uppsala, Sweden. It is known for research contribution in the topics: Population & Soil water. The organization has 13510 authors who have published 35241 publications receiving 1414458 citations. The organization is also known as: Sveriges Lantbruksuniversitet & SLU.


Papers
More filters
Journal ArticleDOI
TL;DR: The development of a genotyping array with ∼27,000 SNPs is reported and it is shown that genome-wide association mapping of mendelian traits in dog breeds can be achieved with only ∼20 dogs, showing that trait mapping within dog breeds will be highly efficient and generally applicable to trait mapping.
Abstract: With several hundred genetic diseases and an advantageous genome structure, dogs are ideal for mapping genes that cause disease. Here we report the development of a genotyping array with approximately 27,000 SNPs and show that genome-wide association mapping of mendelian traits in dog breeds can be achieved with only approximately 20 dogs. Specifically, we map two traits with mendelian inheritance: the major white spotting (S) locus and the hair ridge in Rhodesian ridgebacks. For both traits, we map the loci to discrete regions of <1 Mb. Fine-mapping of the S locus in two breeds refines the localization to a region of approximately 100 kb contained within the pigmentation-related gene MITF. Complete sequencing of the white and solid haplotypes identifies candidate regulatory mutations in the melanocyte-specific promoter of MITF. Our results show that genome-wide association mapping within dog breeds, followed by fine-mapping across multiple breeds, will be highly efficient and generally applicable to trait mapping, providing insights into canine and human health.

527 citations

Journal ArticleDOI
TL;DR: General recommendations on European bioassessment of streams were derived from the results, including those on land use changes, hydromorphological degradation on the microhabitat scale and general degradation gradients.
Abstract: Summary 1. Periphytic diatoms, macrophytes, benthic macroinvertebrates and fish were sampled with standard methods in 185 streams in nine European countries to compare their response to degradation. Streams were classified into two main stream type groups (i.e. lowland, mountain streams); in addition, the lowland streams were grouped into four more specific stream types. 2. Principal components analysis with altogether 43 environmental parameters was used to construct complex stressor gradients for physical–chemical, hydromorphological and land use data. About 30 metrics were calculated for each sample and organism group. Metric responses to different stress types were analysed by Spearman Rank Correlation. 3. All four organism groups showed significant response to eutrophication/organic pollution gradients. Generally, diatom metrics were most strongly correlated to eutrophication gradients (85% and 89% of the diatom metrics tested correlated significantly in mountain and lowland streams, respectively), followed by invertebrate metrics (91% and 59%). 4. Responses of the four organism groups to other gradients were less strong; all organism groups responded to varying degrees to land use changes, hydromorphological degradation on the microhabitat scale and general degradation gradients, while the response to hydromorphological gradients on the reach scale was mainly limited to benthic macroinvertebrates (50% and 44% of the metrics tested correlated significantly in mountain and lowland streams, respectively) and fish (29% and 47%). 5. Fish and macrophyte metrics generally showed a poor response to degradation gradients in mountain streams and a strong response in lowland streams. 6. General recommendations on European bioassessment of streams were derived from the results.

525 citations

Journal ArticleDOI
TL;DR: The large vascular meristem of poplar trees with its highly organized secondary xylem enables the boundaries between different developmental zones to be easily distinguished, and this property of wood-forming tissues allowed us to determine a unique tissue-specific transcript profile for a well defined developmental gradient.
Abstract: The large vascular meristem of poplar trees with its highly organized secondary xylem enables the boundaries between different developmental zones to be easily distinguished. This property of wood-forming tissues allowed us to determine a unique tissue-specific transcript profile for a well defined developmental gradient. RNA was prepared from different developmental stages of xylogenesis for DNA microarray analysis by using a hybrid aspen unigene set consisting of 2,995 expressed sequence tags. The analysis revealed that the genes encoding lignin and cellulose biosynthetic enzymes, as well as a number of transcription factors and other potential regulators of xylogenesis, are under strict developmental stage-specific transcriptional regulation.

525 citations

Journal ArticleDOI
TL;DR: A comprehensive phylogenetic analysis of the nosZ gene coding the N2OR in genomes retrieved from public databases revealed two distinct clades of nosZ, indicating a physiological dichotomy in the diversity of N2O-reducing microorganisms.
Abstract: Nitrous oxide (N2O) is a major radiative forcing and stratospheric ozone-depleting gas emitted from terrestrial and aquatic ecosystems. It can be transformed to nitrogen gas (N2) by bacteria and archaea harboring the N2O reductase (N2OR), which is the only known N2O sink in the biosphere. Despite its crucial role in mitigating N2O emissions, knowledge of the N2OR in the environment remains limited. Here, we report a comprehensive phylogenetic analysis of the nosZ gene coding the N2OR in genomes retrieved from public databases. The resulting phylogeny revealed two distinct clades of nosZ, with one unaccounted for in studies investigating N2O-reducing communities. Examination of N2OR structural elements not considered in the phylogeny revealed that the two clades differ in their signal peptides, indicating differences in the translocation pathway of the N2OR across the membrane. Sequencing of environmental clones of the previously undetected nosZ lineage in various environments showed that it is widespread and diverse. Using quantitative PCR, we demonstrate that this clade was most often at least as abundant as the other, thereby more than doubling the known extent of the overall N2O-reducing community in the environment. Furthermore, we observed that the relative abundance of nosZ from either clade varied among habitat types and environmental conditions. Our results indicate a physiological dichotomy in the diversity of N2O-reducing microorganisms, which might be of importance for understanding the relationship between the diversity of N2O-reducing microorganisms and N2O reduction in different ecosystems.

524 citations

Journal ArticleDOI
TL;DR: The concept of normalization in transcript quantification is introduced here in an attempt to convince molecular biologists, and non-specialists, that systematic validation of reference genes is essential for producing accurate, reliable data in qRT-PCR analyses, and thus should be an integral component of them.
Abstract: Quantitative RT-PCR (reverse transcription polymerase chain reaction, also known as qRT-PCR or real-time RT-PCR) has been used in large proportions of transcriptome analyses published to date. The accuracy of the results obtained by this method strongly depends on accurate transcript normalization using stably expressed genes, known as references. Statistical algorithms have been developed recently to help validate reference genes but, surprisingly, this robust approach is under-utilized in plants. Instead, putative 'housekeeping' genes tend to be used as references without any proper validation. The concept of normalization in transcript quantification is introduced here and the factors affecting its reliability in qRT-PCR are discussed in an attempt to convince molecular biologists, and non-specialists, that systematic validation of reference genes is essential for producing accurate, reliable data in qRT-PCR analyses, and thus should be an integral component of them.

524 citations


Authors

Showing all 13653 results

NameH-indexPapersCitations
Svante Pääbo14740784489
Lars Klareskog13169763281
Stephen Hillier129113883831
Carol V. Robinson12367051896
Jun Yu121117481186
Peter J. Anderson12096663635
David E. Clapham11938258360
Angela M. Gronenborn11356844800
David A. Wardle11040970547
Agneta Oskarsson10676640524
Jack S. Remington10348138006
Hans Ellegren10234939437
Per A. Peterson10235635788
Malcolm J. Bennett9943937207
Gunnar E. Carlsson9846632638
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

92% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

92% related

University of Guelph
50.5K papers, 1.7M citations

88% related

United States Forest Service
21.8K papers, 959.1K citations

87% related

Agriculture and Agri-Food Canada
21.3K papers, 748.1K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023116
2022252
20212,311
20201,957
20191,787
20181,624