scispace - formally typeset
Search or ask a question
Institution

Swedish University of Agricultural Sciences

EducationUppsala, Sweden
About: Swedish University of Agricultural Sciences is a education organization based out in Uppsala, Sweden. It is known for research contribution in the topics: Population & Soil water. The organization has 13510 authors who have published 35241 publications receiving 1414458 citations. The organization is also known as: Sveriges Lantbruksuniversitet & SLU.


Papers
More filters
Journal ArticleDOI
TL;DR: A first theoretical assessment of microplastics release on land, storage in soils and sediments and transport by run-off and rivers was described and it was anticipated that high flow periods can remobilize this pool of MPs.
Abstract: The presence of microplastics (MPs) in the environment is a problem of growing concern. While research has focused on MP occurrence and impacts in the marine environment, very little is known about their release on land, storage in soils and sediments and transport by run-off and rivers. This study describes a first theoretical assessment of these processes. A mathematical model of catchment hydrology, soil erosion and sediment budgets was upgraded to enable description of MP fate. The Thames River in the UK was used as a case study. A general lack of data on MP emissions to soils and rivers and the mass of MPs in agricultural soils, limits the present work to serve as a purely theoretical, nevertheless rigorous, assessment that can be used to guide future monitoring and impact evaluations. The fundamental assumption on which modelling is based is that the same physical controls on soil erosion and natural sediment transport (for which model calibration and validation are possible), also control MP transport and storage. Depending on sub-catchment soil characteristics and precipitation patterns, approximately 16-38% of the heavier-than-water MPs hypothetically added to soils (e.g. through routine applications of sewage sludge) are predicted to be stored locally. In the stream, MPs < 0.2 mm are generally not retained, regardless of their density. Larger MPs with densities marginally higher than water can instead be retained in the sediment. It is, however, anticipated that high flow periods can remobilize this pool. Sediments of river sections experiencing low stream power are likely hotspots for deposition of MPs. Exposure and impact assessments should prioritize these environments.

454 citations

Journal ArticleDOI
TL;DR: It is shown here that phytoplankton resource use, and thus carbon fixation, is directly linked to the diversity of phytopsized communities, and that the diversity requirement for stable ecosystem functioning scales with the nutrient level (total phosphorus), as evidenced by the opposing effects of diversity and resource level on the variability of both resource use and community composition.
Abstract: The relationship between species diversity and ecosystem functioning has been debated for decades, especially in relation to the “macroscopic” realm (higher plants and metazoans). Although there is emerging consensus that diversity enhances productivity and stability in communities of higher organisms; however, we still do not know whether these relationships apply also for communities of unicellular organisms, such as phytoplankton, which contribute ≈50% to the global primary production. We show here that phytoplankton resource use, and thus carbon fixation, is directly linked to the diversity of phytoplankton communities. Datasets from freshwater and brackish habitats show that diversity is the best predictor for resource use efficiency of phytoplankton communities across considerable environmental gradients. Furthermore, we show that the diversity requirement for stable ecosystem functioning scales with the nutrient level (total phosphorus), as evidenced by the opposing effects of diversity (negative) and resource level (positive) on the variability of both resource use and community composition. Our analyses of large-scale observational data are consistent with experimental and model studies demonstrating causal effects of microbial diversity on functional properties at the system level. Our findings point at potential linkages between eutrophication and pollution-mediated loss of phytoplankton diversity. Factors reducing phytoplankton diversity may have direct detrimental effects on the amount and predictability of aquatic primary production.

453 citations

Journal ArticleDOI
TL;DR: In this paper, the potential advantages of eco-functional intensification in organic farming by intercropping cereal and grain legume species sown and harvested together are reviewed based on a literature analysis reinforced with integration of an original dataset of 58 field experiments conducted since 2001 in contrasted pedo-climatic European conditions.
Abstract: World population is projected to reach over nine billion by the year 2050, and ensuring food security while mitigating environmental impacts represents a major agricultural challenge. Thus, higher productivity must be reached through sustainable production by taking into account climate change, resources rarefaction like phosphorus and water, and losses of fertile lands. Enhancing crop diversity is increasingly recognized as a crucial lever for sustainable agro-ecological development. Growing legumes, a major biological nitrogen source, is also a powerful option to reduce synthetic nitrogen fertilizers use and associated fossil energy consumption. Organic farming, which does not allow the use of chemical, is also regarded as one prototype to enhance the sustainability of modern agriculture while decreasing environmental impacts. Here, we review the potential advantages of eco-functional intensification in organic farming by intercropping cereal and grain legume species sown and harvested together. Our review is based on a literature analysis reinforced with integration of an original dataset of 58 field experiments conducted since 2001 in contrasted pedo-climatic European conditions in order to generalize the findings and draw up common guidelines. The major points are that intercropping lead to: (i) higher and more stable grain yield than the mean sole crops (0.33 versus 0.27 kg m−2), (ii) higher cereal protein concentration than in sole crop (11.1 versus 9.8 %), (iii) higher and more stable gross margin than the mean sole crops (702 versus 577 € ha−1) and (iv) improved use of abiotic resources according to species complementarities for light interception and use of both soil mineral nitrogen and atmospheric N2. Intercropping is particularly suited for low-nitrogen availability systems but further mechanistic understanding is required to propose generic crop management procedures. Also, development of this practice must be achieved with the collaboration of value chain actors such as breeders to select cultivars suited to intercropping.

453 citations

Journal ArticleDOI
Peter Arensburger1, Karyn Megy, Robert M. Waterhouse2, Robert M. Waterhouse3, Jenica L. Abrudan4, Paolo Amedeo5, Beatriz García Antelo6, Lyric C. Bartholomay7, Shelby L. Bidwell, Elisabet Caler5, Francisco Camara, Corey L. Campbell8, Kathryn S. Campbell9, Claudio Casola10, Marta T Castro11, Ishwar Chandramouliswaran5, Sinéad B. Chapman12, Scott Christley4, Javier Costas, Eric Eisenstadt5, Cédric Feschotte13, Claire M. Fraser-Liggett14, Roderic Guigó, Brian J. Haas12, Martin Hammond, Bill S. Hansson15, Janet Hemingway16, Sharon R. Hill17, Clint Howarth12, Rickard Ignell17, Ryan C. Kennedy4, Chinnappa D. Kodira18, Neil F. Lobo4, Chunhong Mao19, George F. Mayhew20, Kristin Michel21, Akio Mori4, Nannan Liu22, Horacio Naveira23, Vishvanath Nene24, Vishvanath Nene14, Nam P. Nguyen13, Matthew D. Pearson12, Ellen J. Pritham13, Daniela Puiu25, Yumin Qi19, Hilary Ranson16, José M. C. Ribeiro26, Hugh M Roberston27, David W. Severson4, Martin Shumway26, Mario Stanke28, Robert L. Strausberg5, Cheng Sun13, Granger G. Sutton5, Zhijian Jake Tu19, Jose M. C. Tubio6, Maria F. Unger4, Dana L. Vanlandingham29, Albert J. Vilella, Owen White14, Jared White12, Charles S. Wondji16, Jennifer R. Wortman14, Evgeny M. Zdobnov3, Evgeny M. Zdobnov29, Evgeny M. Zdobnov2, Bruce W. Birren12, Bruce M. Christensen20, Frank H. Collins4, Anthony J. Cornel30, George Dimopoulos31, Linda Hannick5, Stephen Higgs29, Gregory C. Lanzaro32, Daniel Lawson, Norman H. Lee33, Marc A. T. Muskavitch12, Marc A. T. Muskavitch34, Marc A. T. Muskavitch9, Alexander S. Raikhel1, Peter W. Atkinson1 
01 Oct 2010-Science
TL;DR: The genomic sequence of C. quinquefasciatus is described, which reveals distinctions related to vector capacities and habitat preferences, and confirmed that inoculation with unfamiliar bacteria prompted strong immune responses in Culex.
Abstract: Culex quinquefasciatus (the southern house mosquito) is an important mosquito vector of viruses such as West Nile virus and St. Louis encephalitis virus, as well as of nematodes that cause lymphatic filariasis. C. quinquefasciatus is one species within the Culex pipiens species complex and can be found throughout tropical and temperate climates of the world. The ability of C. quinquefasciatus to take blood meals from birds, livestock, and humans contributes to its ability to vector pathogens between species. Here, we describe the genomic sequence of C. quinquefasciatus: Its repertoire of 18,883 protein-coding genes is 22% larger than that of Aedes aegypti and 52% larger than that of Anopheles gambiae with multiple gene-family expansions, including olfactory and gustatory receptors, salivary gland genes, and genes associated with xenobiotic detoxification.

452 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a framework for evidence-based guidance on how tasks to mobilise, translate, negotiate, synthesise and apply multiple forms of evidence can bridge knowledge systems.

452 citations


Authors

Showing all 13653 results

NameH-indexPapersCitations
Svante Pääbo14740784489
Lars Klareskog13169763281
Stephen Hillier129113883831
Carol V. Robinson12367051896
Jun Yu121117481186
Peter J. Anderson12096663635
David E. Clapham11938258360
Angela M. Gronenborn11356844800
David A. Wardle11040970547
Agneta Oskarsson10676640524
Jack S. Remington10348138006
Hans Ellegren10234939437
Per A. Peterson10235635788
Malcolm J. Bennett9943937207
Gunnar E. Carlsson9846632638
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

92% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

92% related

University of Guelph
50.5K papers, 1.7M citations

88% related

United States Forest Service
21.8K papers, 959.1K citations

87% related

Agriculture and Agri-Food Canada
21.3K papers, 748.1K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023116
2022252
20212,311
20201,957
20191,787
20181,624