scispace - formally typeset
Search or ask a question
Institution

Swedish University of Agricultural Sciences

EducationUppsala, Sweden
About: Swedish University of Agricultural Sciences is a education organization based out in Uppsala, Sweden. It is known for research contribution in the topics: Population & Soil water. The organization has 13510 authors who have published 35241 publications receiving 1414458 citations. The organization is also known as: Sveriges Lantbruksuniversitet & SLU.


Papers
More filters
Journal ArticleDOI
01 Jan 1995
TL;DR: Stored human urine had pH values of 8.9 and was composed of eight main ionic species (> 0.1 meq L−1), the cations Na, K, NH4, Ca and the anions, Cl, SO4, PO4 and HCO3 as mentioned in this paper.
Abstract: Stored human urine had pH values of 8.9 and was composed of eight main ionic species (> 0.1 meq L−1), the cations Na, K, NH4, Ca and the anions, Cl, SO4, PO4 and HCO3. Nitrogen was mainly (> 90%) present as ammoniacal N, with ammonium bicarbonate being the dominant compound. Urea and urate decomposed during storage. Heavy metal concentrations in urine samples were low compared with other organic fertilizers, but copper, mercury, nickel and zinc were 10–500 times higher in urine than in precipitation and surface waters. In a pot experiment with15N labelled human urine, higher gaseous losses and lower crop uptake (barley) of urine N than of labelled ammonium nitrate were found. Phosphorus present in urine was utilized at a higher rate than soluble phosphate, showing that urine P is at least as available to crops as soluble P fertilizers.

373 citations

Journal ArticleDOI
TL;DR: Pheromone-mediated mating disruption has become a commercially viable pest management technique and is used to control the codling moth, Cydia pomonella, a key insect pest of apple, on 160,000 ha worldwide.
Abstract: Lepidopteran insects use sex pheromones to communicate for mating. Olfactory communication and mate-finding can be prevented by permeating the atmosphere with synthetic pheromone. Pheromonemediated mating disruption has become a commercially viable pest management technique and is used to control the codling moth, Cydia pomonella, a key insect pest of apple, on 160,000 ha worldwide. The codling moth sex pheromone, codlemone, is species specific and nontoxic. Orchard treatments with up to 100 grams of synthetic codlemone per hectare effectively control codling moth populations over the entire growing season. Practical implementation of the mating disruption technique has been realized at an opportune time, as codling moth has become resistant to many insecticides. We review codling moth chemical ecology and factors underlying the behavioral mechanisms and practical implementation of mating disruption. Area-wide programs are the result of collaborative efforts between academic research institutions, extension, chemical industries, and grower organizations, and they demonstrate the environmental and economic relevance of pheromone research.

373 citations

Journal ArticleDOI
TL;DR: Downregulation of CCR in transgenic poplar was associated with up to 50% reduced lignin content and an orange-brown, often patchy, coloration of the outer xylem, suggesting a stress response induced by the altered cell wall structure.
Abstract: Cinnamoyl-CoA reductase (CCR) catalyzes the penultimate step in monolignol biosynthesis. We show that downregulation of CCR in transgenic poplar (Populus tremula x Populus alba) was associated with up to 50% reduced lignin content and an orange-brown, often patchy, coloration of the outer xylem. Thioacidolysis, nuclear magnetic resonance (NMR), immunocytochemistry of lignin epitopes, and oligolignol profiling indicated that lignin was relatively more reduced in syringyl than in guaiacyl units. The cohesion of the walls was affected, particularly at sites that are generally richer in syringyl units in wild-type poplar. Ferulic acid was incorporated into the lignin via ether bonds, as evidenced independently by thioacidolysis and by NMR. A synthetic lignin incorporating ferulic acid had a red-brown coloration, suggesting that the xylem coloration was due to the presence of ferulic acid during lignification. Elevated ferulic acid levels were also observed in the form of esters. Transcript and metabolite profiling were used as comprehensive phenotyping tools to investigate how CCR downregulation impacted metabolism and the biosynthesis of other cell wall polymers. Both methods suggested reduced biosynthesis and increased breakdown or remodeling of noncellulosic cell wall polymers, which was further supported by Fourier transform infrared spectroscopy and wet chemistry analysis. The reduced levels of lignin and hemicellulose were associated with an increased proportion of cellulose. Furthermore, the transcript and metabolite profiling data pointed toward a stress response induced by the altered cell wall structure. Finally, chemical pulping of wood derived from 5-year-old, field-grown transgenic lines revealed improved pulping characteristics, but growth was affected in all transgenic lines tested.

373 citations

Journal ArticleDOI
TL;DR: A physiological function for dehydrins in certain plant cells during optimal growth conditions and in most cell types during ABA or cold treatment is supported and suggest a functional specialization for the members of this protein family.
Abstract: Stress-induced accumulation of five (COR47, LTI29, ERD14, LTI30 and RAB18) and tissue localization of four (LTI29, ERD14, LTI30 and RAB18) dehydrins in Arabidopsis were characterized immunologically with protein-specific antibodies. The five dehydrins exhibited clear differences in their accumulation patterns in response to low temperature, ABA and salinity. ERD14 accumulated in unstressed plants, although the protein level was up-regulated by ABA, salinity and low temperature. LTI29 mainly accumulated in response to low temperature, but was also found in ABA- and salt-treated plants. LTI30 and COR47 accumulated primarily in response to low temperature, whereas RAB18 was only found in ABA-treated plants and was the only dehydrin in this study that accumulated in dry seeds. Immunohistochemical localization of LTI29, ERD14 and RAB18 demonstrated tissue and cell type specificity in unstressed plants. ERD14 was present in the vascular tissue and bordering parenchymal cells, LTI29 and ERD14 accumulated in the root tip, and RAB18 was localized to stomatal guard cells. LTI30 was not detected in unstressed plants. The localization of LTI29, ERD14 and RAB18 in stress-treated plants was not restricted to certain tissues or cell types. Instead these proteins accumulated in most cells, although cells within and surrounding the vascular tissue showed more intense staining. LTI30 accumulated primarily in vascular tissue and anthers of cold-treated plants. This study supports a physiological function for dehydrins in certain plant cells during optimal growth conditions and in most cell types during ABA or cold treatment. The differences in stress specificity and spatial distribution of dehydrins in Arabidopsis suggest a functional specialization for the members of this protein family.

373 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present new indices that provide a relative quantitative measure of both the resistance and resilience of a response variable in all possible scenarios, and also test their performance by using a real data set.
Abstract: The stability (resistance and resilience to disturbance) of a soil system is a key factor influencing ecosystem properties and processes. To compare the stability of different systems, it is necessary to have indices that provide a relative quantitative measure of both the resistance and resilience of a response variable in all possible scenarios. However, the indices currently in use are frequently unable to do this, or are difficult to interpret. Here, we present new indices that avoid these problems. We compare our indices with previously published indices of stability, and also test their performance by using a real data set. We show that our indices accurately represent the response of soil properties (e.g. soil microbial biomass) to a disturbance, and that they are capable of determining differences in stability between contrasting soils.

372 citations


Authors

Showing all 13653 results

NameH-indexPapersCitations
Svante Pääbo14740784489
Lars Klareskog13169763281
Stephen Hillier129113883831
Carol V. Robinson12367051896
Jun Yu121117481186
Peter J. Anderson12096663635
David E. Clapham11938258360
Angela M. Gronenborn11356844800
David A. Wardle11040970547
Agneta Oskarsson10676640524
Jack S. Remington10348138006
Hans Ellegren10234939437
Per A. Peterson10235635788
Malcolm J. Bennett9943937207
Gunnar E. Carlsson9846632638
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

92% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

92% related

University of Guelph
50.5K papers, 1.7M citations

88% related

United States Forest Service
21.8K papers, 959.1K citations

87% related

Agriculture and Agri-Food Canada
21.3K papers, 748.1K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023116
2022252
20212,311
20201,957
20191,787
20181,624