Institution
Swiss Federal Institute for Forest, Snow and Landscape Research
Facility•Birmensdorf, Switzerland•
About: Swiss Federal Institute for Forest, Snow and Landscape Research is a(n) facility organization based out in Birmensdorf, Switzerland. It is known for research contribution in the topic(s): Climate change & Biodiversity. The organization has 1256 authors who have published 3222 publication(s) receiving 161639 citation(s). The organization is also known as: WSL.
Papers published on a yearly basis
Papers
More filters
Queen's University Belfast1, Collège de France2, English Heritage3, University of Arizona4, University of Sheffield5, University of Oxford6, University of Minnesota7, University of Hohenheim8, University of Kiel9, Lawrence Livermore National Laboratory10, University of Bergen11, ETH Zurich12, University of Waikato13, Woods Hole Oceanographic Institution14, Swiss Federal Institute for Forest, Snow and Landscape Research15, Cornell University16, University of Bristol17, University of Glasgow18, University of California, Irvine19, University of New South Wales20
TL;DR: In this paper, Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo, CSM Turney, J van der Plicht, CE Weyhenmeyer
Abstract: Additional co-authors: TJ Heaton, AG Hogg, KA Hughen, KF Kaiser, B Kromer, SW Manning, RW Reimer, DA Richards, JR Southon, S Talamo, CSM Turney, J van der Plicht, CE Weyhenmeyer
13,118 citations
University of Melbourne1, Stony Brook University2, City University of New York3, Princeton University4, University of Lausanne5, University of California, Berkeley6, University of Alaska Fairbanks7, National Institute of Water and Atmospheric Research8, Commonwealth Scientific and Industrial Research Organisation9, University of São Paulo10, University of Missouri11, Consejo Nacional de Ciencia y Tecnología12, University of Kansas13, Landcare Research14, AT&T15, McGill University16, James Cook University17, Swiss Federal Institute for Forest, Snow and Landscape Research18
TL;DR: This work compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date and found that presence-only data were effective for modelling species' distributions for many species and regions.
Abstract: Prediction of species' distributions is central to diverse applications in ecology, evolution and conservation science. There is increasing electronic access to vast sets of occurrence records in museums and herbaria, yet little effective guidance on how best to use this information in the context of numerous approaches for modelling distributions. To meet this need, we compared 16 modelling methods over 226 species from 6 regions of the world, creating the most comprehensive set of model comparisons to date. We used presence-only data to fit models, and independent presence-absence data to evaluate the predictions. Along with well-established modelling methods such as generalised additive models and GARP and BIOCLIM, we explored methods that either have been developed recently or have rarely been applied to modelling species' distributions. These include machine-learning methods and community models, both of which have features that may make them particularly well suited to noisy or sparse information, as is typical of species' occurrence data. Presence-only data were effective for modelling species' distributions for many species and regions. The novel methods consistently outperformed more established methods. The results of our analysis are promising for the use of data from museums and herbaria, especially as methods suited to the noise inherent in such data improve.
6,718 citations
United States Geological Survey1, University of Arizona2, University of Batna3, Oregon State University4, Los Alamos National Laboratory5, Centre national de la recherche scientifique6, Swiss Federal Institute for Forest, Snow and Landscape Research7, Natural Resources Canada8, University of California, Berkeley9, University of Granada10, Northern Research Institute11, Forest Research Institute12, Food and Agriculture Organization13, University of Montana14, Northern Arizona University15
TL;DR: In this paper, the authors present the first global assessment of recent tree mortality attributed to drought and heat stress and identify key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system.
Abstract: Greenhouse gas emissions have significantly altered global climate, and will continue to do so in the future. Increases in the frequency, duration, and/or severity of drought and heat stress associated with climate change could fundamentally alter the composition, structure, and biogeography of forests in many regions. Of particular concern are potential increases in tree mortality associated with climate-induced physiological stress and interactions with other climate-mediated processes such as insect outbreaks and wildfire. Despite this risk, existing projections of tree mortality are based on models that lack functionally realistic mortality mechanisms, and there has been no attempt to track observations of climate-driven tree mortality globally. Here we present the first global assessment of recent tree mortality attributed to drought and heat stress. Although episodic mortality occurs in the absence of climate change, studies compiled here suggest that at least some of the world's forested ecosystems already may be responding to climate change and raise concern that forests may become increasingly vulnerable to higher background tree mortality rates and die-off in response to future warming and drought, even in environments that are not normally considered water-limited. This further suggests risks to ecosystem services, including the loss of sequestered forest carbon and associated atmospheric feedbacks. Our review also identifies key information gaps and scientific uncertainties that currently hinder our ability to predict tree mortality in response to climate change and emphasizes the need for a globally coordinated observation system. Overall, our review reveals the potential for amplified tree mortality due to drought and heat in forests worldwide.
4,950 citations
Centre national de la recherche scientifique1, Commonwealth Scientific and Industrial Research Organisation2, National Oceanic and Atmospheric Administration3, United States Department of Energy4, University of California, Irvine5, Seconda Università degli Studi di Napoli6, Central Maine Community College7, Max Planck Society8, Swiss Federal Institute for Forest, Snow and Landscape Research9, Utrecht University10, Carma11, National Center for Atmospheric Research12, University of East Anglia13, Massachusetts Institute of Technology14, VU University Amsterdam15, Goddard Space Flight Center16, University of Bern17, Nagoya University18, Imperial College London19, Royal Netherlands Meteorological Institute20, University of California, San Diego21, National Institute of Water and Atmospheric Research22
TL;DR: In this paper, the authors construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions.
Abstract: Methane is an important greenhouse gas, responsible for about 20% of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios-which differ in fossil fuel and microbial emissions-to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain. © 2013 Macmillan Publishers Limited.
1,381 citations
University of Alberta1, Université de Sherbrooke2, University of Lapland3, University of Victoria4, Wageningen University and Research Centre5, University of Alaska Fairbanks6, University of Oxford7, Université du Québec à Trois-Rivières8, Laval University9, St. John's University10, University of Amsterdam11, University of Vermont12, Aarhus University13, University of Zurich14, Swiss Federal Institute for Forest, Snow and Landscape Research15, University of Edinburgh16, La Trobe University17, Woods Hole Oceanographic Institution18, Lamont–Doherty Earth Observatory19, University of British Columbia20, University of Tromsø21, University of Alaska Anchorage22, Queen's University23, University of Virginia24
TL;DR: This article used repeat photography, long-term ecological monitoring and dendrochronology to document shrub expansion in arctic, high-latitude and alpine tundra.
Abstract: Recent research using repeat photography, long-term ecological monitoring and dendrochronology has documented shrub expansion in arctic, high-latitude and alpine tundra
967 citations
Authors
Showing all 1256 results
Name | H-index | Papers | Citations |
---|---|---|---|
Peter H. Verburg | 107 | 464 | 34254 |
Bernhard Schmid | 103 | 460 | 46419 |
Christian Körner | 103 | 376 | 39637 |
André S. H. Prévôt | 90 | 511 | 38599 |
Fortunat Joos | 87 | 276 | 36951 |
Niklaus E. Zimmermann | 80 | 277 | 39364 |
Robert Huber | 78 | 311 | 25131 |
David Frank | 78 | 186 | 18624 |
Jan Esper | 75 | 254 | 19280 |
James W. Kirchner | 73 | 238 | 21958 |
David B. Roy | 70 | 250 | 26241 |
Emmanuel Frossard | 68 | 356 | 15281 |
Derek Eamus | 67 | 285 | 17317 |
Benjamin Poulter | 66 | 255 | 22519 |
Ulf Büntgen | 65 | 316 | 15876 |