scispace - formally typeset
Search or ask a question
Institution

Swiss Federal Institute for Forest, Snow and Landscape Research

FacilityBirmensdorf, Switzerland
About: Swiss Federal Institute for Forest, Snow and Landscape Research is a facility organization based out in Birmensdorf, Switzerland. It is known for research contribution in the topics: Climate change & Soil water. The organization has 1256 authors who have published 3222 publications receiving 161639 citations. The organization is also known as: WSL.


Papers
More filters
Journal ArticleDOI
Abstract: Climate-Smart Forestry (CSF) is an emerging branch of sustainable forest management that aims to manage forests in response to climate change. Specific CSF strategies are viewed as a way forward for developing suitable management responses and enhancing the provision of ecosystem services. However, there is currently a lack of comprehensive and cohesive assessment to implement CSF. This paper describes the step-by-step process that developed a comprehensive and shared definition of CSF, and the process for selecting indicators that assess the “climate-smartness” of forest management. Adaptation, mitigation and social dimensions are the core focus of the CSF definition, which recognises the need to integrate and avoid development of these aspects in isolation. An iterative participatory process was used with a range of experts in forest-related fields from the CLIMO project, this was subsequently supported by a network analysis to identify sustainable forest management indicators important to CSF. The definition developed here, is an important first step in to promote CSF that will aid practice in the forestry sector. It can be used as a template across Europe, tailored to local contexts. Further work communicating CSF to practitioners and policy-makers will create a CSF practice and culture that will help to safeguard future forest economies and communities.

90 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the impact of climate and human activities on fire occurrence in the most fire-prone regions of Switzerland and found that road and livestock densities had similar influences in the two cantons.

90 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured soil CH4 and N2O fluxes along an afforestation chronosequence with Norway spruce (Picea abies L.) established on an extensively grazed subalpine pasture.
Abstract: Upland soils are important sinks for atmospheric methane (CH4), a process essentially driven by methanotrophic bacteria. Soil CH4 uptake often depends on land use, with afforestation generally increasing the soil CH4 sink. However, the mechanisms driving these changes are not well understood to date. We measured soil CH4 and N2O fluxes along an afforestation chronosequence with Norway spruce (Picea abies L.) established on an extensively grazed subalpine pasture. Our experimental design included forest stands with ages ranging from 25 to >120 years and included a factorial cattle urine addition treatment to test for the sensitivity of soil CH4 uptake to N application. Mean CH4 uptake significantly increased with stand age on all sampling dates. In contrast, CH4 oxidation by sieved soils incubated in the laboratory did not show a similar age dependency. Soil CH4 uptake was unrelated to soil N status (but cattle urine additions stimulated N2O emission). Our data indicated that soil CH4 uptake in older forest stands was driven by reduced soil water content, which resulted in a facilitated diffusion of atmospheric CH4 into soils. The lower soil moisture likely resulted from increased interception and/or evapotranspiration in the older forest stands. This mechanism contrasts alternative explanations focusing on nitrogen dynamics or the composition of methanotrophic communities, although these factors also might be at play. Our findings further imply that the current dramatic increase in forested area increases CH4 uptake in alpine regions.

89 citations

Journal ArticleDOI
TL;DR: It is shown that functional transitions in ecosystem respiration critically depend on the degree of response of graminoids and saprotrophic fungi to drought, and this work represents a major advance in understanding the nonlinear nature of ecosystem properties to drought.
Abstract: Ecosystems are increasingly prone to climate extremes, such as drought, with long lasting effects on both plant and soil communities and, subsequently, on carbon (C) cycling. However, recent studies underlined the strong variability in ecosystem's response to droughts, raising the issue of non-linear responses in plant and soil communities. The conundrum is what causes ecosystems to shift in response to drought. Here, we investigated the response of plant and soil fungi to drought of different intensities using a water table gradient in peatlands – a major C sink ecosystem. Using moving window structural equation models, we show that substantial changes in ecosystem respiration, plant and soil fungal communities occurred when the water level fell below a tipping point of -24 cm. As a corollary, ecosystem respiration was the greatest when graminoids and saprotrophic fungi became prevalent as a response to the extreme drought. Graminoids indirectly influenced fungal functional composition and soil enzyme activities through their direct effect on dissolved organic matter quality, while saprotrophic fungi directly influenced soil enzyme activities. In turn, increasing enzyme activities promoted ecosystem respiration. We show that functional transitions in ecosystem respiration critically depends on the degree of response of graminoids and saprotrophic fungi to drought. Our results represent a major advance in understanding the non-linear nature of ecosystem properties to drought and pave the way towards a truly mechanistic understanding of the effects of drought on ecosystem processes. This article is protected by copyright. All rights reserved.

89 citations

Journal ArticleDOI
TL;DR: Overall, the effects of heavy metals on P. tremula and S. viminalis showed appreciable potential for storing heavy metals in aging foliage, but refuted Hypotheses 2 and 3, and were inconclusive for Hypothesis 4.
Abstract: Fast-growing trees such as Salix viminalis L. and Populus tremula L. are well suited to phytoremediate heavy metal contaminated soils. However, information on tree performance, particularly leaf function, under conditions of heavy metal contamination is scarce. We used yearly coppiced saplings of S. viminalis and P. tremula growing in model ecosytems to test four hypotheses: (1) heavy metal contamination impairs photosynthesis by injuring leaf structure; (2) the effects of heavy metal contamination are enhanced by acidified rainwater and low soil pH; (3) heavy metal contamination increases dark respiration and, thus, repair processes; and (4) heavy metal contamination is tolerated and remediated better by S. viminalis than by P. tremula. We investigated heavy metal accumulation, tissue injury and gas exchange in leaves of plants subjected to controlled soil contamination with heavy metal dust. Additional treatments included acidic and calcareous natural forest subsoils in combination with irrigation with rainwater at pH 5.5 or 3.5. In both provenances of P. tremula that were studied, but not in S. viminalis, heavy metal treatment reduced photosynthesis and transpiration by varying amounts, except in the hot and dry summer of 2003, but had no effect on dark respiration. At light saturation, net CO(2) uptake and water-use efficiency were reduced by heavy metal contamination, whereas the CO(2) concentration in the leaf intercellular air space was increased. Rainwater pH and subsoil pH only slightly modified the effects of the heavy metal treatment on P. tremula. Gas exchange responses of P. tremula to heavy metals were attributed to leaf structural and ultrastructural changes resulting from hypersensitive-response-like processes and accelerated mesophyll cell senescence and necroses in the lower epidermis, especially along the transport pathways of heavy metals in the leaf lamina. Overall, the effects of heavy metals on P. tremula corroborated Hypothesis 1, but refuted Hypotheses 2 and 3, and were inconclusive for Hypothesis 4. Both P. tremula and S. viminalis showed appreciable potential for storing heavy metals in aging foliage.

89 citations


Authors

Showing all 1333 results

NameH-indexPapersCitations
Peter H. Verburg10746434254
Bernhard Schmid10346046419
Christian Körner10337639637
André S. H. Prévôt9051138599
Fortunat Joos8727636951
Niklaus E. Zimmermann8027739364
Robert Huber7831125131
David Frank7818618624
Jan Esper7525419280
James W. Kirchner7323821958
David B. Roy7025026241
Emmanuel Frossard6835615281
Derek Eamus6728517317
Benjamin Poulter6625522519
Ulf Büntgen6531615876
Network Information
Related Institutions (5)
United States Forest Service
21.8K papers, 959.1K citations

90% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

89% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

88% related

Potsdam Institute for Climate Impact Research
5K papers, 367K citations

87% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022173
2021395
2020327
2019269
2018281