scispace - formally typeset
Search or ask a question
Institution

Swiss Federal Institute for Forest, Snow and Landscape Research

FacilityBirmensdorf, Switzerland
About: Swiss Federal Institute for Forest, Snow and Landscape Research is a facility organization based out in Birmensdorf, Switzerland. It is known for research contribution in the topics: Climate change & Soil water. The organization has 1256 authors who have published 3222 publications receiving 161639 citations. The organization is also known as: WSL.


Papers
More filters
Journal ArticleDOI
TL;DR: This work divides the experimental framework into three main processes: resource dynamics, pollen limitation and genetic and hormonal regulation, and illustrates how specific predictions about proximate mechanisms can be tested, highlighting the few successful experiments as examples.
Abstract: Highly variable and synchronised production of seeds by plant populations, known as masting, is implicated in many important ecological processes, but how it arises remains poorly understood. The lack of experimental studies prevents underlying mechanisms from being explicitly tested, and thereby precludes meaningful predictions on the consequences of changing environments for plant reproductive patterns and global vegetation dynamics. Here we review the most relevant proximate drivers of masting and outline a research agenda that takes the biology of masting from a largely observational field of ecology to one rooted in mechanistic understanding. We divide the experimental framework into three main processes: resource dynamics, pollen limitation and genetic and hormonal regulation, and illustrate how specific predictions about proximate mechanisms can be tested, highlighting the few successful experiments as examples. We envision that the experiments we outline will deliver new insights into how and why masting patterns might respond to a changing environment.

57 citations

Journal ArticleDOI
TL;DR: The data reveal a demographic history where the two species interacted frequently and where migrants originating from the Urals and the West Siberian Plain recolonized northern Russia and Scandinavia using scattered refugial populations of Norway spruce as stepping stones towards the west.
Abstract: Boreal species were repeatedly exposed to ice ages and went through cycles of contraction and expansion while sister species alternated periods of contact and isolation. The resulting genetic structure is consequently complex, and demographic inferences are intrinsically challenging. The range of Norway spruce (Picea abies) and Siberian spruce (Picea obovata) covers most of northern Eurasia; yet their geographical limits and histories remain poorly understood. To delineate the hybrid zone between the two species and reconstruct their joint demographic history, we analysed variation at nuclear SSR and mitochondrial DNA in 102 and 88 populations, respectively. The dynamics of the hybrid zone was analysed with approximate Bayesian computation (ABC) followed by posterior predictive structure plot reconstruction and the presence of barriers across the range tested with estimated effective migration surfaces. To estimate the divergence time between the two species, nuclear sequences from two well-separated populations of each species were analysed with ABC. Two main barriers divide the range of the two species: one corresponds to the hybrid zone between them, and the other separates the southern and northern domains of Norway spruce. The hybrid zone is centred on the Urals, but the genetic impact of Siberian spruce extends further west. The joint distribution of mitochondrial and nuclear variation indicates an introgression of mitochondrial DNA from Norway spruce into Siberian spruce. Overall, our data reveal a demographic history where the two species interacted frequently and where migrants originating from the Urals and the West Siberian Plain recolonized northern Russia and Scandinavia using scattered refugial populations of Norway spruce as stepping stones towards the west.

57 citations

Journal ArticleDOI
TL;DR: It is suggested that effective incorporation of melt enhancement by ponds is essential for accurate predictions of future mass balance change in the region.
Abstract: Glaciers in High Mountain Asia, many of which exhibit surface debris, contain the largest volume of ice outside of the polar regions. Many contain supraglacial pond networks that enhance melt rates locally, but no large‐scale assessment of their impact on melt rates exists. Here we use surface energy balance modeling forced using locally measured meteorological data and monthly satellite‐derived pond distributions to estimate the total melt enhancement for the four main glaciers within the 400‐km2 Langtang catchment, Nepal, for a 6‐month period in 2014. Ponds account for 0.20 ± 0.03 m/year of surface melt, representing a local melt enhancement of a factor of 14 ± 3 compared with the debris‐covered area, and equivalent to 12.5 ± 2.0% of total catchment ice loss. Given the prevalence of supraglacial ponds across the region, our results suggest that effective incorporation of melt enhancement by ponds is essential for accurate predictions of future mass balance change in the region.

56 citations

Journal ArticleDOI
TL;DR: Goldsmith et al. as discussed by the authors proposed a system for ecosystem fluxes with a grant from the Swiss Federal Office for the Environment and the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung.
Abstract: Ecosystem Fluxes Group, Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, Villigen, Switzerland Schmid College of Science and Technology, Chapman University, Orange, California Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland 4 Institute for Applied Plant Biology, Witterswil, Switzerland Department of Ecohydrology, IGB Leibniz‐Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland Correspondence Gregory R. Goldsmith, Schmid College of Science and Technology, Chapman University, Orange, California 92866 USA. Email: goldsmith@chapman.edu Funding information FP7 People: Marie‐Curie Actions, Grant/ Award Number: 290605; Swiss Federal Office for the Environment; Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung, Grant/Award Number: 31003A_153428/1

56 citations

Journal ArticleDOI
TL;DR: In this paper, the long-term artificial change in soil moisture affects the sensitivity of tree-level sap flux to daily atmospheric vapor pressure deficit (VPD) and soil moisture variations, and the generality of these effects across forest types and environments using four manipulative sites in mature forests.

56 citations


Authors

Showing all 1333 results

NameH-indexPapersCitations
Peter H. Verburg10746434254
Bernhard Schmid10346046419
Christian Körner10337639637
André S. H. Prévôt9051138599
Fortunat Joos8727636951
Niklaus E. Zimmermann8027739364
Robert Huber7831125131
David Frank7818618624
Jan Esper7525419280
James W. Kirchner7323821958
David B. Roy7025026241
Emmanuel Frossard6835615281
Derek Eamus6728517317
Benjamin Poulter6625522519
Ulf Büntgen6531615876
Network Information
Related Institutions (5)
United States Forest Service
21.8K papers, 959.1K citations

90% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

89% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

88% related

Potsdam Institute for Climate Impact Research
5K papers, 367K citations

87% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022173
2021395
2020327
2019269
2018281