scispace - formally typeset
Search or ask a question
Institution

Swiss Federal Institute for Forest, Snow and Landscape Research

FacilityBirmensdorf, Switzerland
About: Swiss Federal Institute for Forest, Snow and Landscape Research is a facility organization based out in Birmensdorf, Switzerland. It is known for research contribution in the topics: Climate change & Soil water. The organization has 1256 authors who have published 3222 publications receiving 161639 citations. The organization is also known as: WSL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present and analyze experiences from the tropical Andes based on a recent science-policy process on the national and supra-national government level, where a framework for the science contribution in climate adaptation has been developed; it consists of three stages, including (1) the framing and problem definition, (2) the scientific assessment of climate, impacts, vulnerabilities and risks, and (3) the evaluation of adaptation options and their implementation.

52 citations

Book ChapterDOI
01 Jan 2010
TL;DR: In this paper, an overview of observed changes in vegetation productivity in Arctic tundra and boreal forest ecosystems over the past 3 decades, based on satellite remote sensing and other observational records, and relates these to climate variables and sea ice conditions.
Abstract: This chapter provides an overview of observed changes in vegetation productivity in Arctic tundra and boreal forest ecosystems over the past 3 decades, based on satellite remote sensing and other observational records, and relates these to climate variables and sea ice conditions. The emerging patterns and relationships are often complex but clearly reveal a contrast in the response of the tundra and boreal biomes to recent climate change, with the tundra showing increases and undisturbed boreal forests mostly reductions in productivity. The possible reasons for this divergence are discussed and the consequences of continued climate warming for the vegetation in the Arctic region assessed using ecosystem models, both at the biome-scale and at high spatial resolution focussing on plant functional types in the tundra and the tundra-forest ecotones.

51 citations

Journal ArticleDOI
TL;DR: The findings suggest that the soil microbiome can be strongly influenced by plastic pollution in terrestrial cryoenvironments and further research is required to fully understand microbial colonization on plastic surfaces and the biodegradability of plastic in soils.
Abstract: Plastic pollution poses a threat to terrestrial ecosystems, even impacting soils from remote alpine and arctic areas. Biodegradable plastics are a promising solution to prevent long-term accumulation of plastic litter. However, little is known about the decomposition of biodegradable plastics in soils from alpine and polar ecosystems or the microorganisms involved in the process. Plastics in aquatic environments have previously been shown to form a microbial community on the surface of the plastic distinct from that in the surrounding water, constituting the so-called ‘plastisphere’. Comparable studies in terrestrial environments are scarce. Here, we aimed to characterize the plastisphere microbiome of three types of plastics differing in their biodegradability in soil using DNA metabarcoding. Polylactic acid (PLA), polybutylene adipate terephthalate (PBAT) and polyethylene (PE) were buried in two different soils, from the Swiss Alps and from Northern Greenland, at 15°C for eight weeks. While physico-chemical characteristics of the polymers only showed minor (PLA, PBAT) or no (PE) changes after incubation, a considerably lower α-diversity was observed on the plastic surfaces and prominent shifts occurred in the bacterial and fungal community structures between the plastisphere and the adjacent bulk soil not affected by the plastic. Effects on the plastisphere microbiome decreased with greater biodegradability of the plastics, from PLA to PE. Copiotrophic taxa within the phyla Proteobacteria and Actinobacteria benefitted the most from plastic input. Especially taxa with a known potential to degrade xenobiotics, including Burkholderiales, Caulobacterales, Pseudomonas, Rhodococcus and Streptomyces, thrived in the plastisphere of the Alpine and Arctic soils. In addition, Saccharimonadales (superphylum Patescibacteria) was identified as a key taxon associated with PLA. The association of Saccharibacteria with plastic has not been reported before, and pursuing this finding further may shed light on the lifestyle of this obscure candidate phylum. Plastic addition affected fungal taxa to a lesser extent since only few fungal genera such as Phlebia and Alternaria were increased on the plastisphere. Our findings suggest that the soil microbiome can be strongly influenced by plastic pollution in terrestrial cryoenvironments. Further research is required to fully understand microbial colonization on plastic surfaces and the biodegradation of plastic in soils.

51 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a comprehensive methodological approach for identifying primary forests, and tested it within one of Europe's hotspots of primary forest abundance: the Carpathian Mountains.

51 citations

Journal ArticleDOI
TL;DR: The results suggest that for roots with a low polyphenol content the TTC test provides a valid assessment of tissue vitality, but that the test should not be applied to the fine roots of adult trees because of their high content of polyphenolic compounds whose reaction with TTC masks changes in TTC reduction.
Abstract: A common method to determine the vitality of fine root tissue is the measurement of respiratory activity with triphenyltetrazolium chloride (TTC). The colorless TTC is reduced to the red-colored triphenyl formazan (TF) as a result of the dehydrogenase activity of the mitochondrial respiratory chain. However, measurements with woody fine roots of adult Norway spruce and European beech trees showed that dead control roots had a high potential to react with TTC. High reactivity was found in boiled fine roots and the bark of coarse roots, but not in the boiled wood of coarse roots. By sequential extraction of dried and ground adult Norway spruce fine roots, reactivity with TTC was reduced by about 75% (water extraction), 93% (water/methanol extraction) and 94% (water/acetone extraction). The water extract reacted with TTC in the same way as polyphenols such as lignin, catechin and epicatechin. Boiling did not affect the extent to which fine roots of adult trees reduced TTC, whereas it greatly reduced TTC reduction by seedling roots. Application of the TTC test to roots of spruce seedlings subjected to increasing drought showed a progressive decrease in TTC reduction. The decrease in TTC reduction was paralleled by a reduction in O(2) consumption, thus supporting the conclusion that for roots with a low polyphenol content the TTC test provides a valid assessment of tissue vitality. Our results suggest, however, that the TTC test should not be applied to the fine roots of adult trees because of their high content of polyphenolic compounds whose reaction with TTC masks changes in TTC reduction due to changes in the respiratory capacity of the tissue.

51 citations


Authors

Showing all 1333 results

NameH-indexPapersCitations
Peter H. Verburg10746434254
Bernhard Schmid10346046419
Christian Körner10337639637
André S. H. Prévôt9051138599
Fortunat Joos8727636951
Niklaus E. Zimmermann8027739364
Robert Huber7831125131
David Frank7818618624
Jan Esper7525419280
James W. Kirchner7323821958
David B. Roy7025026241
Emmanuel Frossard6835615281
Derek Eamus6728517317
Benjamin Poulter6625522519
Ulf Büntgen6531615876
Network Information
Related Institutions (5)
United States Forest Service
21.8K papers, 959.1K citations

90% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

89% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

88% related

Potsdam Institute for Climate Impact Research
5K papers, 367K citations

87% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022173
2021395
2020327
2019269
2018281