scispace - formally typeset
Search or ask a question
Institution

Swiss Federal Institute for Forest, Snow and Landscape Research

FacilityBirmensdorf, Switzerland
About: Swiss Federal Institute for Forest, Snow and Landscape Research is a facility organization based out in Birmensdorf, Switzerland. It is known for research contribution in the topics: Climate change & Soil water. The organization has 1256 authors who have published 3222 publications receiving 161639 citations. The organization is also known as: WSL.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors used very high-resolution stereo satellite imagery (e.g., Pleiades) and UAV photogrammetry to estimate the depth distribution in high mountain catchments.
Abstract: . Accurate knowledge of snow depth distributions in mountain catchments is critical for applications in hydrology and ecology. Recently, a method was proposed to map snow depth at meter-scale resolution from very-high-resolution stereo satellite imagery (e.g., Pleiades) with an accuracy close to 0.5 m. However, the validation was limited to probe measurements and unmanned aircraft vehicle (UAV) photogrammetry, which sampled a limited fraction of the topographic and snow depth variability. We improve upon this evaluation using accurate maps of the snow depth derived from Airborne Snow Observatory laser-scanning measurements in the Tuolumne river basin, USA. We find a good agreement between both datasets over a snow-covered area of 138 km 2 on a 3 m grid, with a positive bias for a Pleiades snow depth of 0.08 m, a root mean square error of 0.80 m and a normalized median absolute deviation (NMAD) of 0.69 m. Satellite data capture the relationship between snow depth and elevation at the catchment scale and also small-scale features like snow drifts and avalanche deposits at a typical scale of tens of meters. The random error at the pixel level is lower in snow-free areas than in snow-covered areas, but it is reduced by a factor of 2 (NMAD of approximately 0.40 m for snow depth) when averaged to a 36 m grid. We conclude that satellite photogrammetry stands out as a convenient method to estimate the spatial distribution of snow depth in high mountain catchments.

48 citations

Journal ArticleDOI
TL;DR: The calibrated model suggests that the response of forest productivity to climate extremes is more complex than simple shift toward higher elevation, and robust estimates of NPP are key for increasing the understanding of forests ecosystems carbon dynamics under climate extremes.
Abstract: The response of forest productivity to climate extremes strongly depends on ambient environmental and site conditions. To better understand these relationships at a regional scale, we used nearly 800 observation years from 271 permanent long-term forest monitoring plots across Switzerland, obtained between 1980 and 2017. We assimilated these data into the 3-PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960-2018, and tested for productivity shifts in response to climate along elevational gradient and in extreme years. Simulated net primary productivity (NPP) decreased with elevation (2.86 +/- 0.006 Mg C ha(-1) year(-1) km(-1) for P. abies and 0.93 +/- 0.010 Mg C ha(-1) year(-1) km(-1) for F. sylvatica). During warm-dry extremes, simulated NPP for both species increased at higher and decreased at lower elevations, with reductions in NPP of more than 25% for up to 21% of the potential species distribution range in Switzerland. Reduced plant water availability had a stronger effect on NPP than temperature during warm-dry extremes. Importantly, cold-dry extremes had negative impacts on regional forest NPP comparable to warm-dry extremes. Overall, our calibrated model suggests that the response of forest productivity to climate extremes is more complex than simple shift toward higher elevation. Such robust estimates of NPP are key for increasing our understanding of forests ecosystems carbon dynamics under climate extremes.

48 citations

Journal ArticleDOI
15 Jul 2009-Geoderma
TL;DR: In this paper, a fuzzy logic expert system was developed which allows to evaluate the potential plant productivity of restored soils based on measured physical soil parameters such as packing density, penetration resistance, air capacity and saturated hydraulic conductivity.

48 citations

Journal ArticleDOI
TL;DR: This is the first time a population genomic study incorporating ancient DNA samples of tree subfossils is conducted at a moderate cost using reproducible exome‐reduced complexity and the reference catalogue on which reads are aligned does not rely on de novo assembly of anonymous RAD‐sequencing loci, but on an assembled transcriptome obtained from RNAseq data.
Abstract: Over the last decade, protocols aimed at reproducibly sequencing reduced-genome subsets in non-model organisms have been widely developed. Their use is, however, limited to DNA of relatively high molecular weight. During the last year, several methods exploiting hybridization capture using probes based on RAD-sequencing loci have circumvented this limitation and opened avenues to the study of samples characterized by degraded DNA, such as historical specimens. Here, we present a major update to those methods, namely hybridization capture from RAD-derived probes obtained from a reduced eXome template (hyRAD-X), a technique applying RAD sequencing to messenger RNA from one or few fresh specimens to elaborate bench-top produced probes, that is, a reduced representation of the exome, further used to capture homologous DNA from a samples set. In contrast to previous hybridization capture methods, the reference catalogue on which reads are aligned does not rely on de novo assembly of anonymous RAD-sequencing loci, but on an assembled transcriptome obtained from RNAseq data, thus increasing the accuracy of loci definition and single-nucleotide polymorphisms (SNP) call, and targeting, specifically, expressed genes. Finally, the capture step of hyRAD-X relies on RNA probes, increasing stringency of hybridization, making it well suited for low-content DNA samples. As a proof of concept, we applied hyRAD-X to subfossil needles from the coniferous tree Abies alba, collected in lake sediments (Origlio, Switzerland) and dating back from 7200 to 5800 years before present (bp). More specifically, we investigated genetic variation before, during and after an anthropogenic perturbation that caused an abrupt decrease in A. alba population size, 6500–6200 years bp. HyRAD-X produced a matrix encompassing 524 exome-derived SNPs. Despite a lower observed heterozygosity was found during the 6500–6200 years bp time slice, genetic composition was nearly identical before and after the perturbation, indicating that re-expansion of the population after the decline was most likely driven by local specimens. To the best of our knowledge, this is the first time a population genomic study incorporating ancient DNA samples of tree subfossils is conducted at a moderate cost using reproducible exome-reduced complexity.

48 citations

Journal ArticleDOI
01 Jul 2018-Catena
TL;DR: In this paper, an Inclinable Large-scale Direct Shear Apparatus (ILDSA) was built to study the shearing behavior of root-permeated soils.
Abstract: Soils with roots or root-like inclusions have often been tested in direct shear to quantify the effects of vegetation on the shear strength of soil, and in turn, the stability of slopes. However, a straightforward evaluation of root reinforcement is challenging due to the complex nature of roots, and the dependency of soil behaviour on many factors. An Inclinable Large-scale Direct Shear Apparatus (ILDSA) was built to study the shearing behaviour of root-permeated soils. Planted specimens, consisting of two different sets of species, were prepared with a moraine, sampled from a recent landslide location, and tested in direct shear subsequent to saturation. Relationships of peak stress ratio with dry weight of roots, maximum dilatancy angle and void ratio were investigated to evaluate the behaviour of root-permeated soil. The combined approach, of taking both presence of roots and dilatant behaviour of soil into consideration, results in a more realistic understanding and quantification of the effects of root reinforcement, at least, for laboratory testing of root-permeated soils.

48 citations


Authors

Showing all 1333 results

NameH-indexPapersCitations
Peter H. Verburg10746434254
Bernhard Schmid10346046419
Christian Körner10337639637
André S. H. Prévôt9051138599
Fortunat Joos8727636951
Niklaus E. Zimmermann8027739364
Robert Huber7831125131
David Frank7818618624
Jan Esper7525419280
James W. Kirchner7323821958
David B. Roy7025026241
Emmanuel Frossard6835615281
Derek Eamus6728517317
Benjamin Poulter6625522519
Ulf Büntgen6531615876
Network Information
Related Institutions (5)
United States Forest Service
21.8K papers, 959.1K citations

90% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

89% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

88% related

Potsdam Institute for Climate Impact Research
5K papers, 367K citations

87% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022173
2021395
2020327
2019269
2018281