scispace - formally typeset
Search or ask a question
Institution

Swiss Federal Institute for Forest, Snow and Landscape Research

FacilityBirmensdorf, Switzerland
About: Swiss Federal Institute for Forest, Snow and Landscape Research is a facility organization based out in Birmensdorf, Switzerland. It is known for research contribution in the topics: Climate change & Soil water. The organization has 1256 authors who have published 3222 publications receiving 161639 citations. The organization is also known as: WSL.


Papers
More filters
Journal ArticleDOI
01 Dec 2015-Oikos
TL;DR: It is found that the degree of specialisation, mobility and their interaction, greatly influenced species’ responses to urbanisation, with highly mobile specialist species of all taxonomic groups being affected most.
Abstract: Urbanisation has an important impact on biodiversity, mostly driving changes in species assemblages, through the replacement of specialist with generalist species, thus leading to biotic homogenisation. Mobility is also assumed to greatly affect species’ ability to cope in urban environments. Moreover, specialisation, mobility and their interaction are expected to greatly influence ecological processes such as metacommunity dynamics and assembly processes, and consequently the way and the spatial scale at which organisms respond to urbanisation. Here we investigate urbanisation impacts on distinct characteristics of species assemblages – namely specialisation degree in resource use, mobility and number of species, classified according to both characteristics and their combination – for vascular plants, butterflies and birds, across a range of spatial scales (from 1 × 1 km plots to 5 km-radius buffers around them). We found that the degree of specialisation, mobility and their interaction, greatly influenced species’ responses to urbanisation, with highly mobile specialist species of all taxonomic groups being affected most. Two different patterns were found: for plants, urbanisation induced trait divergence by favouring highly mobile species with narrow habitat ranges. For birds and butterflies, however, it reduced the number of highly mobile specialist species, thus driving trait convergence. Mobile organisms, across and within taxonomic groups, tended to respond at larger spatial scales than those that are poorly mobile. These findings emphasize the need to take into consideration species’ ecological aspects, as well as a wide range of spatial scales when evaluating the impact of urbanisation on biodiversity. Our results also highlight the harmful impact of widespread urban expansion on organisms such as butterflies, especially highly mobile specialists, which were negatively affected by urban areas even at great distances.

186 citations

Journal ArticleDOI
TL;DR: In this article, the authors report on the similar detachment of the entire lower parts of two adjacent glaciers in western Tibet in July and September 2016, leading to an unprecedented pair of giant low-angle ice avalanches with volumes of 68.
Abstract: Surges and glacier avalanches are expressions of glacier instability, and among the most dramatic phenomena in the mountain cryosphere Until now, the catastrophic collapse of a glacier, combining the large volume of surges and mobility of ice avalanches, has been reported only for the 2002 130 × 106 m3 detachment of Kolka Glacier (Caucasus Mountains), which has been considered a globally singular event Here, we report on the similar detachment of the entire lower parts of two adjacent glaciers in western Tibet in July and September 2016, leading to an unprecedented pair of giant low-angle ice avalanches with volumes of 68 ± 2 × 106 m3 and 83 ± 2 × 106 m3 On the basis of satellite remote sensing, numerical modelling and field investigations, we find that the twin collapses were caused by climate- and weather-driven external forcing, acting on specific polythermal and soft-bed glacier properties These factors converged to produce surge-like enhancement of driving stresses and massively reduced basal friction connected to subglacial water and fine-grained bed lithology, to eventually exceed collapse thresholds in resisting forces of the tongues frozen to their bed Our findings show that large catastrophic instabilities of low-angle glaciers can happen under rare circumstances without historical precedent

185 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated how temporal patterns of microclimate below sparse and dense forest canopy related to those of nearby open areas and how this relationship was influenced by soil moisture and seasonality.
Abstract: Summary 1. Forest microclimate is crucial for the growth and survival of tree seedlings and understorey vegetation. This high ecological relevance contrasts with the poor functional and quantitative understanding of how the properties of forest ecosystems influence forest microclimate. 2. In a long-term (1998–2011) trial, we investigated how temporal patterns of microclimate below sparse and dense forest canopy related to those of nearby open areas and how this relationship was influenced by soil moisture and seasonality. Air temperature (T), vapour pressure deficit (VPD), soil matrix potential and leaf area index (LAI) were measured in a unique set-up of below-canopy and open-area meteorological stations at eleven distinct forest ecosystems, characteristic of subalpine and temperate climate zones. Data from these plots were analysed for the moderating capacity of the canopy, that is, the differences between below-canopy and open-area microclimate, with respect to (i) long-term means, (ii) dynamics within homogeneous moist- vs. dry-soil periods and (iii) diurnal patterns. 3. The long-term mean moderating capacity of the canopy was up to 3.3 °C for daily Tmax and 0.52 kPa for daily VPDmax, of which soil moisture status alone accounted for up to 1.2 ° C( Tmax) and 0.21 kPa (VPDmax). Below dense canopy (LAI > 4), the moderating capacity was generally higher when soils were dry and increased during dry-soil periods, particularly in spring and somewhat less in summer. The opposite pattern was found below sparse canopy (LAI < 4). At the diurnal level, moderating capacity below dense canopy was strongest in mid-afternoon and during dry-soil conditions, whereas peak moderation below sparse canopy occurred in mid-morning and during moist-soil conditions. 4. Synthesis. Our results suggest a threshold canopy density, which is probably linked to sitespecific water availability, below which the moderating capacity of forest ecosystems switches from supportive to unsupportive for seedling establishment. Under supportive moderating capacity, we understand a stronger mitigation during physiologically most demanding conditions for plant growth. Such a threshold canopy density sheds new light on forest resilience to climate change. Climate change may alter forest canopy density in a way that precludes successful establishment of tree species and ultimately changes forest ecosystem structure and functioning.

182 citations

Journal ArticleDOI
TL;DR: The authors' results indicate a number of well‐supported dependencies between abundances of certain AMF taxa and soil properties such as pH, soil fertility and texture, and a surprising lack of effect of available soil phosphorus on the AMF community profiles.
Abstract: Arbuscular mycorrhizal fungi (AMF) are ubiquitous soil fungi, forming mutualistic symbiosis with a majority of terrestrial plant species. They are abundant in nearly all soils, less diverse than soil prokaryotes and other intensively studied soil organisms and thus are promising candidates for universal indicators of land management legacies and soil quality degradation. However, insufficient data on how the composition of indigenous AMF varies along soil and landscape gradients have hampered the definition of baselines and effect thresholds to date. Here, indigenous AMF communities in 154 agricultural soils collected across Switzerland were profiled by quantitative real-time PCR with taxon-specific markers for six widespread AMF species. To identify the key determinants of AMF community composition, the profiles were related to soil properties, land management and site geography. Our results indicate a number of well-supported dependencies between abundances of certain AMF taxa and soil properties such as pH, soil fertility and texture, and a surprising lack of effect of available soil phosphorus on the AMF community profiles. Site geography, especially the altitude and large geographical distance, strongly affected AMF communities. Unexpected was the apparent lack of a strong land management effect on the AMF communities as compared to the other predictors, which could be due to the rarity of highly intensive and unsustainable land management in Swiss agriculture. In spite of the extensive coverage of large geographical and soil gradients, we did not identify any taxon suitable as an indicator of land use among the six taxa we studied.

181 citations


Authors

Showing all 1333 results

NameH-indexPapersCitations
Peter H. Verburg10746434254
Bernhard Schmid10346046419
Christian Körner10337639637
André S. H. Prévôt9051138599
Fortunat Joos8727636951
Niklaus E. Zimmermann8027739364
Robert Huber7831125131
David Frank7818618624
Jan Esper7525419280
James W. Kirchner7323821958
David B. Roy7025026241
Emmanuel Frossard6835615281
Derek Eamus6728517317
Benjamin Poulter6625522519
Ulf Büntgen6531615876
Network Information
Related Institutions (5)
United States Forest Service
21.8K papers, 959.1K citations

90% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

89% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

88% related

Potsdam Institute for Climate Impact Research
5K papers, 367K citations

87% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022173
2021395
2020327
2019269
2018281