scispace - formally typeset
Search or ask a question
Institution

Swiss Federal Institute for Forest, Snow and Landscape Research

FacilityBirmensdorf, Switzerland
About: Swiss Federal Institute for Forest, Snow and Landscape Research is a facility organization based out in Birmensdorf, Switzerland. It is known for research contribution in the topics: Climate change & Soil water. The organization has 1256 authors who have published 3222 publications receiving 161639 citations. The organization is also known as: WSL.


Papers
More filters
Journal ArticleDOI
TL;DR: A growth-defence trade-off appears to be the norm within plant life-history groups and within the majority of individual sites, and mechanisms maintaining grassland biodiversity may operate within this constraint.
Abstract: Plant growth can be limited by resource acquisition and defence against consumers, leading to contrasting trade-off possibilities. The competition-defence hypothesis posits a trade-off between competitive ability and defence against enemies (e.g. herbivores and pathogens). The growth-defence hypothesis suggests that strong competitors for nutrients are also defended against enemies, at a cost to growth rate. We tested these hypotheses using observations of 706 plant populations of over 500 species before and following identical fertilisation and fencing treatments at 39 grassland sites worldwide. Strong positive covariance in species responses to both treatments provided support for a growth-defence trade-off: populations that increased with the removal of nutrient limitation (poor competitors) also increased following removal of consumers. This result held globally across 4 years within plant life-history groups and within the majority of individual sites. Thus, a growth-defence trade-off appears to be the norm, and mechanisms maintaining grassland biodiversity may operate within this constraint.

154 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the moderating effect of the canopy on the below-canopy microclimate of 14 different forest ecosystems in Switzerland and concluded that natural recruitment in pine forests and high-altitude forests may respond most sensitively to climate change.

154 citations

Journal ArticleDOI
TL;DR: In this article, the impact of air pollution, climate change and natural stress factors on forest ecosystems is investigated. But the empirical, field-based forest responses to the various drivers are evaluated in view of available knowledge.
Abstract: In 1994, a “Pan-European Programme for Intensive and Continuous Monitoring of Forest Ecosystems” started to contribute to a better understanding of the impact of air pollution, climate change and natural stress factors on forest ecosystems. The programme today counts approximately 760 permanent observation plots including near 500 plots with data on both air quality and forest ecosystem impacts. This paper first presents impacts of air pollution and climate on forests ecosystems as reported in the literature on the basis of laboratory and field research. Next, results from monitoring studies, both at a European wide scale and related national studies, are presented in terms of trends and geographic variations in nitrogen and sulphur deposition and ozone concentrations and the impacts of those changes in interaction with weather conditions on (i) water and element budgets and nutrient-acidity status, (ii) forest crown condition, (iii) forest growth and carbon sequestration and (iv) species diversity of the ground vegetation. The empirical, field based forest responses to the various drivers are evaluated in view of available knowledge. Analyses of large scale monitoring data sets show significant effects of atmospheric deposition on nutrient-acidity status in terms of elevated nitrogen and sulphur or sulphate concentrations in forest foliage and soil solution and related soil acidification in terms of elevated aluminium and/or base cation leaching from the forest ecosystem. Relationships of air pollution with crown condition, however, appear to be weak and limited in time and space, while climatic factors appear to be more important drivers. Regarding forest growth, monitoring results indicate a clear fertilization effect of N deposition on European forests but the field evidence for impacts of ambient ozone exposure on tree growth is less clear.

153 citations

Journal ArticleDOI
TL;DR: Pinus sylvestris seedlings from the continental Central Alps under increased temperatures and extended spring and/or summer drought revealed lower phenotypic plasticity than continental seedlings under high precipitation, which might limit their competitive ability in continental Alpine forests in non-drought years.
Abstract: Increased summer drought will exacerbate the regeneration of many tree species at their lower latitudinal and altitudinal distribution limits. In vulnerable habitats, introduction of more drought-tolerant provenances or species is currently considered to accelerate tree species migration and facilitate forest persistence. Trade-offs between drought adaptation and growth plasticity might, however, limit the effectiveness of assisted migration, especially if introductions focus on provenances or species from different climatic regions. We tested in a common garden experiment the performance of Pinus sylvestris seedlings from the continental Central Alps under increased temperatures and extended spring and/or summer drought, and compared seedling emergence, survival and biomass allocation to that of P. sylvestris and closely related Pinus nigra from a Mediterranean seed source. Soil heating had only minor effects on seedling performance but high spring precipitation doubled the number of continental P. sylvestris seedlings present after the summer drought. At the same time, twice as many seedlings of the Mediterranean than the continental P. sylvestris provenance were present, which was due to both higher emergence and lower mortality under dry conditions. Both P. sylvestris provenances allocated similar amounts of biomass to roots when grown under low summer precipitation. Mediterranean seedlings, however, revealed lower phenotypic plasticity than continental seedlings under high precipitation, which might limit their competitive ability in continental Alpine forests in non-drought years. By contrast, high variability in the response of individual seedlings to summer drought indicates the potential of continental P. sylvestris provenances to adapt to changing environmental conditions.

152 citations

Journal ArticleDOI
TL;DR: High-resolution in situ observations of stable isotopes in soil and transpiration water are coupled with Bayesian mixing modeling to track the fate of H-labeled rain pulses following drought through soil and plants of deciduous tree ecosystems and show that tree species differ in their ability to quickly acquire the newly available source of rainwater.
Abstract: Plants rely primarily on rainfall infiltrating their root zones - a supply that is inherently variable, and fluctuations are predicted to increase on most of the Earth's surface. Yet, interrelationships between water availability and plant use on short timescales are difficult to quantify and remain poorly understood. To overcome previous methodological limitations, we coupled high-resolution in situ observations of stable isotopes in soil and transpiration water. We applied the approach along with Bayesian mixing modeling to track the fate of (2) H-labeled rain pulses following drought through soil and plants of deciduous tree ecosystems. We resolve how rainwater infiltrates the root zones in a nonequilibrium process and show that tree species differ in their ability to quickly acquire the newly available source. Sessile oak (Quercus petraea) adjusted root uptake to vertical water availability patterns under drought, but readjustment toward the rewetted topsoil was delayed. By contrast, European beech (Fagus sylvatica) readily utilized water from all soil depths independent of water depletion, enabling faster uptake of rainwater. Our results demonstrate that species-specific plasticity and responses to water supply fluctuations on short timescales can now be identified and must be considered to predict vegetation functional dynamics and water cycling under current and future climatic conditions.

151 citations


Authors

Showing all 1333 results

NameH-indexPapersCitations
Peter H. Verburg10746434254
Bernhard Schmid10346046419
Christian Körner10337639637
André S. H. Prévôt9051138599
Fortunat Joos8727636951
Niklaus E. Zimmermann8027739364
Robert Huber7831125131
David Frank7818618624
Jan Esper7525419280
James W. Kirchner7323821958
David B. Roy7025026241
Emmanuel Frossard6835615281
Derek Eamus6728517317
Benjamin Poulter6625522519
Ulf Büntgen6531615876
Network Information
Related Institutions (5)
United States Forest Service
21.8K papers, 959.1K citations

90% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

89% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

88% related

Potsdam Institute for Climate Impact Research
5K papers, 367K citations

87% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022173
2021395
2020327
2019269
2018281