scispace - formally typeset
Search or ask a question
Institution

Swiss Federal Institute for Forest, Snow and Landscape Research

FacilityBirmensdorf, Switzerland
About: Swiss Federal Institute for Forest, Snow and Landscape Research is a facility organization based out in Birmensdorf, Switzerland. It is known for research contribution in the topics: Climate change & Soil water. The organization has 1256 authors who have published 3222 publications receiving 161639 citations. The organization is also known as: WSL.


Papers
More filters
Journal ArticleDOI
TL;DR: Physiological assays and diversity analysis based on 16S rRNA clone libraries demonstrate that pH tolerance is a general phenotypic trait of the genus Burkholderia, and provides a basis for building a predictive understanding of the biogeographical patterns exhibited by Burk holderia sp.
Abstract: Bacteria belonging to the genus Burkholderia are highly versatile with respect to their ecological niches and lifestyles, ranging from nodulating tropical plants to causing melioidosis and fatal infections in cystic fibrosis patients. Despite the clinical importance and agronomical relevance of Burkholderia species, information about the factors influencing their occurrence, abundance and diversity in the environment is scarce. Recent findings have demonstrated that pH is the main predictor of soil bacterial diversity and community structure, with the highest diversity observed in neutral pH soils. As many Burkholderia species have been isolated from low pH environments, we hypothesized that acid tolerance may be a general feature of this genus, and pH a good predictor of their occurrence in soils. Using a combination of environmental surveys at trans-continental and local scales, as well as in vitro assays, we show that, unlike most bacteria, Burkholderia species have a competitive advantage in acidic soils, but are outcompeted in alkaline soils. Physiological assays and diversity analysis based on 16S rRNA clone libraries demonstrate that pH tolerance is a general phenotypic trait of the genus Burkholderia. Our results provide a basis for building a predictive understanding of the biogeographical patterns exhibited by Burkholderia sp.

103 citations

Journal ArticleDOI
TL;DR: Dynamic data and a hydraulic plant growth model are needed to test how investments in leaves versus sapwood and roots contribute to transpiration and to maximizing carbon gain throughout entire growth seasons.
Abstract: Leaf specific conductivity (LSC; the ratio of stem conductivity (K(P)) to leaf area (A(L))), a measure of the hydraulic capacity of the stem to supply leaves with water, varies with soil water content. Empirical evidence for LSC responses to drought is ambiguous, because previously published results were subject to many confounding factors. We tested how LSC of similar-sized trees of the same population, under similar climatic conditions, responds to persistently wet or dry soil. Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) trees were compared between a dry site and a wet site in the Valais, an inner alpine valley in Switzerland. Soil water strongly influenced A(L) and K(P) and the plant components affecting K(P), such as conduit radius, conduit density and functional sapwood area. Trees at the dry site had lower LSC than trees with the same stem diameter at the wet site. Low LSC in trees at the dry site was associated with a smaller functional sapwood area and narrower conduits, resulting in a stronger reduction in K(P) than in A(L). These observations support the hypothesis that trees maintain a homeostatic water pressure gradient. An alternative hypothesis is that relatively high investments in leaves compared with sapwood contribute to carbon gain over an entire season by enabling rapid whole-plant photosynthesis during periods of high water availability (e.g., in spring, after rain events and during morning hours when leaf-to-air vapor pressure deficit is small). Dynamic data and a hydraulic plant growth model are needed to test how investments in leaves versus sapwood and roots contribute to transpiration and to maximizing carbon gain throughout entire growth seasons.

102 citations

Journal ArticleDOI
TL;DR: Genomic divergence and the lack of large-scale neutral genetic patterns suggest that gene flow allows the spread of advantageous alleles in adaptive genes in species occurring in heterogeneous environments, which might reduce their regional extinction risk under CC.
Abstract: The evolutionary potential of long-lived species, such as forest trees, is fundamental for their local persistence under climate change (CC). Genome–environment association (GEA) analyses reveal if species in heterogeneous environments at the regional scale are under differential selection resulting in populations with potential preadaptation to CC within this area. In 79 natural [i]Fagus sylvatica[/i] populations, neutral genetic patterns were characterized using 12 simple sequence repeat (SSR) markers, and genomic variation (144 single nucleotide polymorphisms (SNPs) out of 52 candidate genes) was related to 87 environmental predictors in the latent factor mixed model, logistic regressions and isolation by distance/environmental (IBD/IBE) tests. SSR diversity revealed relatedness at up to 150m intertree distance but an absence of large-scale spatial genetic structure and IBE. In the GEA analyses, 16 SNPs in 10 genes responded to one or several environmental predictors and IBE, corrected for IBD, was confirmed. The GEA often reflected the proposed gene functions, including indications for adaptation to water availability and temperature. Genomic divergence and the lack of large-scale neutral genetic patterns suggest that gene flow allows the spread of advantageous alleles in adaptive genes. Thereby, adaptation processes are likely to take place in species occurring in heterogeneous environments, which might reduce their regional extinction risk under CC

102 citations

Journal ArticleDOI
TL;DR: In this article, a study was conducted to determine whether HCl vapor completely removes carbonates even in dolomite-rich soil and to what extent a widely used acid-fumigation method has to be modified for humus-rich soils.
Abstract: In carbonate-containing soils a reliable determination of organic C requires a method that effectively separates organic and inorganic C without altering the organic matter. This study was conducted to determine whether HCl vapor completely removes carbonates even in dolomite-rich soils and to what extent a widely used acid-fumigation method has to be modified for humus-rich soils. Furthermore, it was tested whether HCl fumigation alters organic-C content. Since C and N parameters are often analyzed simultaneously we also tested the influence of acid-vapor treatment on N content and on δ 13 C of soil organic matter. We applied fumigation with 37% HCl for 8 and 32 h using 9 carbonate-containing soil samples. Inorganic C ranged from 7 to 124 and organic C from 9 to 267 g kg -1 . The maximum contents of dolomite and calcite were 940 and 640 g kg -1 , respectively. A time of 8 h was enough to completely remove all carbonates. Neither the content nor the δ 13 C of organic C were significantly affected by fumigation. In contrast, N contents were altered by acid treatment. Based on these results and on our experience in analyzing more than 1000 soil samples, a recommended procedure for acid fumigation of carbonate-containing soils with a wide range of organic- and inorganic-C contents was derived. Samples pretreated in this way can be analyzed reliably for their organic-C content and δ 13 C. Furthermore, N and inorganic-C contents can be determined with a quality sufficient for many purposes.

102 citations

Journal ArticleDOI
TL;DR: The value of combining clustering and ABC methods in a comprehensive framework to dissect the complex patterns of spread of global invaders is illustrated, with most of the populations being admixtures resulting from independent introductions from Europe and subsequent spread among the invaded areas.
Abstract: Understanding the evolutionary histories of invasive species is critical to adopt appropriate management strategies, but this process can be exceedingly complex to unravel. As illustrated in thisstudy ofthe worldwide invasion of thewoodwaspSirex noctilio, population genetic analyses using coalescent-based scenario testing together with Bayesian clustering and historical records provide opportunities to address this problem. The pest spread from its native Eurasian range to the Southern Hemisphere in the 1900s and recently to Northern America, where it poses economic and potentially ecological threats to planted and native Pinus spp. To investigate the origins and pathways of invasion, samples from five continents were analysed using microsatellite and sequence data. The results of clustering analysis and scenario testing suggest that the invasion history is much more complex than previously believed, with most of the populations being admixtures resulting from independent introductions from Europe and subsequent spread among the invaded areas. Clustering analyses revealed two major source gene pools, one of which the scenario testing suggests is an as yet unsampled source. Results also shed light on the microevolutionary processes occurring during introductions, and showed that only few specimens gave rise to some of the populations. Analyses of microsatellites using clustering and scenario testing considered against historical data drastically altered our understanding of the invasion history of S. noctilio and will have important implications for the strategies employed to fight its spread. This study illustrates the value of combining clustering and ABC methods in a comprehensive framework to dissect the complex patterns of spread of global invaders.

102 citations


Authors

Showing all 1333 results

NameH-indexPapersCitations
Peter H. Verburg10746434254
Bernhard Schmid10346046419
Christian Körner10337639637
André S. H. Prévôt9051138599
Fortunat Joos8727636951
Niklaus E. Zimmermann8027739364
Robert Huber7831125131
David Frank7818618624
Jan Esper7525419280
James W. Kirchner7323821958
David B. Roy7025026241
Emmanuel Frossard6835615281
Derek Eamus6728517317
Benjamin Poulter6625522519
Ulf Büntgen6531615876
Network Information
Related Institutions (5)
United States Forest Service
21.8K papers, 959.1K citations

90% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

89% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

88% related

Potsdam Institute for Climate Impact Research
5K papers, 367K citations

87% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022173
2021395
2020327
2019269
2018281