scispace - formally typeset
Search or ask a question
Institution

Swiss Federal Institute for Forest, Snow and Landscape Research

FacilityBirmensdorf, Switzerland
About: Swiss Federal Institute for Forest, Snow and Landscape Research is a facility organization based out in Birmensdorf, Switzerland. It is known for research contribution in the topics: Climate change & Soil water. The organization has 1256 authors who have published 3222 publications receiving 161639 citations. The organization is also known as: WSL.


Papers
More filters
Journal ArticleDOI
TL;DR: The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood as mentioned in this paper, and the causes of changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity.
Abstract: The causes of a greening trend detected in the Arctic using the normalized difference vegetation index (NDVI) are still poorly understood. Changes in NDVI are a result of multiple ecological and social factors that affect tundra net primary productivity. Here we use a 25 year time series of AVHRR-derived NDVI data (AVHRR: advanced very high resolution radiometer), climate analysis, a global geographic information database and ground-based studies to examine the spatial and temporal patterns of vegetation greenness on the Yamal Peninsula, Russia. We assess the effects of climate change, gas-field development, reindeer grazing and permafrost degradation. In contrast to the case for Arctic North America, there has not been a significant trend in summer temperature or NDVI, and much of the pattern of NDVI in this region is due to disturbances. There has been a 37% change in early-summer coastal sea-ice concentration, a 4% increase in summer land temperatures and a 7% change in the average time-integrated NDVI over the length of the satellite observations. Gas-field infrastructure is not currently extensive enough to affect regional NDVI patterns. The effect of reindeer is difficult to quantitatively assess because of the lack of control areas where reindeer are excluded. Many of the greenest landscapes on the Yamal are associated with landslides and drainage networks that have resulted from ongoing rapid permafrost degradation. A warming climate and enhanced winter snow are likely to exacerbate positive feedbacks between climate and permafrost thawing. We present a diagram that summarizes the social and ecological factors that influence Arctic NDVI. The NDVI should be viewed as a powerful monitoring tool that integrates the cumulative effect of a multitude of factors affecting Arctic land-cover change.

95 citations

Journal ArticleDOI
TL;DR: In this paper, the influence of different soil types on the net input of new C into soils under CO2 enrichment and the stability and fate of these new C inputs in soils was estimated.
Abstract: The aim of this study was to estimate (i) the influence of different soil types on the net input of new C into soils under CO2 enrichment and (ii) the stability and fate of these new C inputs in soils. We exposed young beech–spruce model ecosystems on an acidic loam and calcareous sand for 4 years to elevated CO2. The added CO2 was depleted in 13C, allowing to trace new C inputs in the plant–soil system. We measured CO2-derived new C in soil C pools fractionated into particle sizes and monitored respiration as well as leaching of this new C during incubation for 1 year. Soil type played a crucial role in the partitioning of C. The net input of new C into soils under elevated CO2 was about 75% greater in the acidic loam than in the calcareous sand, despite a 100% and a 45% greater above- and below-ground biomass on the calcareous sand. This was most likely caused by a higher turnover of C in the calcareous sand as indicated by 30% higher losses of new C from the calcareous sand than from the acidic loam during incubation. Therefore, soil properties determining stabilization of soil C were apparently more important for the accumulation of C in soils than tree productivity. Soil fractionation revealed that about 60% of the CO2-derived new soil C was incorporated into sand fractions. Low natural 13C abundance and wide C/N ratios show that sand fractions comprise little decomposed organic matter. Consistently, incubation indicated that new soil C was preferentially respired as CO2. During the first month, evolved CO2 consisted to 40–55% of new C, whereas the fraction of new C in bulk soil C was 15–23% only. Leaching of DOC accounted for 8–23% of the total losses of new soil C. The overall effects of CO2 enrichment on soil C were small in both soils, although tree growth increased significantly on the calcareous sand. Our results suggest that the potential of soils for C sequestration is limited, because only a small fraction of new C inputs into soils will become long-term soil C.

95 citations

Journal ArticleDOI
TL;DR: In this article, the authors assessed the influence of stand dynamics on long-term growth trends by examining the past diameters of all the trees living in two uneven-aged subalpine Norway spruce (Picea abies (L) Karst) stands in the Italian eastern Alps, as reconstructed from ring widths.

95 citations

Journal ArticleDOI
TL;DR: In this paper, a root bundle model was proposed to quantify root reinforcement at the stand scale using the spatially explicit root bundle (RBM) for describing pullout force-displacement behavior coupled with a model for lateral root distribution.

95 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the impact of historical land use legacies on contemporary forest disturbance and afforestation in the Carpathian region in Eastern Europe. And they found that the odds of forest disturbance were about 50% higher in areas that were not forested in 1860 (new forests) compared to those that were forested then (old forests).
Abstract: Historic land use can exert strong land-use legacies, i.e., long-lasting effects on ecosystems, but the importance of land-use legacies, alongside other factors, for subsequent forest-cover change is unclear. If past land use affects rates of forest disturbance and afforestation then this may constrain land use planning and land management options, and legacies of current land management may constrain future land use. Our goal was to assess if and how much land-use legacies affect contemporary forest disturbance, and the abundance of different forest types in the Carpathian region in Eastern Europe (265,000 km2, encompassing parts of Poland, Slovakia, Ukraine, Romania, Hungary, and Czech Republic). We modeled contemporary forest disturbance (based on satellite image analysis from 1985 to 2010) as a function of historic land use (based on digitized topographic maps from 1860 and 1960). Contemporary forest disturbance was strongly related to historic land use even when controlling for environmental, accessibility and socio-political variation. Across the Carpathian region, the odds of forest disturbance were about 50% higher in areas that were not forested in 1860 (new forests) compared to areas that were forested then (old forests). The forest disturbance in new forests was particularly high in Poland (88% higher odds), Slovakia (69%) and Romania (67%) and persisted across the entire range of environmental, accessibility and socio-political variation. Reasons for the observed legacy effects may include extensive plantations outside forest ranges, predominantly spruce, poplar, and black locust, which are prone to natural disturbances. Furthermore, as plantations reach harvestable age of about 70 years for pulp and 120 year for saw-timber production, these are likely to be clear-cut, producing the observed legacy effects. Across the Carpathians, forest types shifted towards less coniferous cover in 2010 compared to the 1860s and 1960s likely due to extensive historic conifer harvest, and to recent natural disturbance events and clear-cuts of forest plantations. Our results underscore the importance of land-use legacies, and show that past land uses can greatly affect subsequent forest disturbance for centuries. Given rapid land use changes worldwide, it is important to understand how past legacies affect current management and what the impact of current land management decisions may be for future land use.

95 citations


Authors

Showing all 1333 results

NameH-indexPapersCitations
Peter H. Verburg10746434254
Bernhard Schmid10346046419
Christian Körner10337639637
André S. H. Prévôt9051138599
Fortunat Joos8727636951
Niklaus E. Zimmermann8027739364
Robert Huber7831125131
David Frank7818618624
Jan Esper7525419280
James W. Kirchner7323821958
David B. Roy7025026241
Emmanuel Frossard6835615281
Derek Eamus6728517317
Benjamin Poulter6625522519
Ulf Büntgen6531615876
Network Information
Related Institutions (5)
United States Forest Service
21.8K papers, 959.1K citations

90% related

Swedish University of Agricultural Sciences
35.2K papers, 1.4M citations

89% related

Helmholtz Centre for Environmental Research - UFZ
9.8K papers, 394.3K citations

88% related

Potsdam Institute for Climate Impact Research
5K papers, 367K citations

87% related

Swiss Federal Institute of Aquatic Science and Technology
7.2K papers, 449.5K citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023111
2022173
2021395
2020327
2019269
2018281