scispace - formally typeset
Search or ask a question

Showing papers by "Swiss Federal Institute of Aquatic Science and Technology published in 2009"


Journal ArticleDOI
TL;DR: This work has identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment, which reflect a wide range of physical, chemical, and biological responses to climate.
Abstract: While there is a general sense that lakes can act as sentinels of climate change, their efficacy has not been thoroughly analyzed. We identified the key response variables within a lake that act as indicators of the effects of climate change on both the lake and the catchment. These variables reflect a wide range of physical, chemical, and biological responses to climate. However, the efficacy of the different indicators is affected by regional response to climate change, characteristics of the catchment, and lake mixing regimes. Thus, particular indicators or combinations of indicators are more effective for different lake types and geographic regions. The extraction of climate signals can be further complicated by the influence of other environmental changes, such as eutrophication or acidification, and the equivalent reverse phenomena, in addition to other land-use influences. In many cases, however, confounding factors can be addressed through analytical tools such as detrending or filtering. Lakes are effective sentinels for climate change because they are sensitive to climate, respond rapidly to change, and integrate information about changes in the catchment.

1,353 citations


Journal ArticleDOI
TL;DR: In this article, a record of total solar irradiance covering 9300 years is presented, which covers almost the entire Holocene, based on a recently observationally derived relationship between total solar radiation and the open solar magnetic field.
Abstract: [1] For the first time a record of total solar irradiance covering 9300 years is presented, which covers almost the entire Holocene. This reconstruction is based on a recently observationally derived relationship between total solar irradiance and the open solar magnetic field. Here we show that the open solar magnetic field can be obtained from the cosmogenic radionuclide 10Be measured in ice cores. Thus, 10Be allows to reconstruct total solar irradiance much further back than the existing record of the sunspot number which is usually used to reconstruct total solar irradiance. The resulting increase in solar-cycle averaged TSI from the Maunder Minimum to the present amounts to (0.9 ± 0.4) Wm−2. In combination with climate models, our reconstruction offers the possibility to test the claimed links between climate and TSI forcing.

786 citations


Journal ArticleDOI
TL;DR: It could be demonstrated that biological sand filtration is an efficient additional barrier for the elimination of biodegradable compounds formed during ozonation such as NDMA.
Abstract: The removal efficiency for 220 micropollutants was studied at the scale of a municipal wastewater treatment plant (WWTP) upgraded with post-ozonation followed by sand filtration. During post-ozonation, compounds with activated aromatic moieties, amine functions, or double bonds such as sulfamethoxazole, diclofenac, or carbamazepine with second-order rate constants for the reaction with ozone >104 M−1 s−1 at pH 7 (fast-reacting) were eliminated to concentrations below the detection limit for an ozone dose of 0.47 g O3 g−1 dissolved organic carbon (DOC). Compounds more resistant to oxidation by ozone such as atenolol and benzotriazole were increasingly eliminated with increasing ozone doses, resulting in >85% removal for a medium ozone dose (∼0.6 g O3 g−1 DOC). Only a few micropollutants such as some X-ray contrast media and triazine herbicides with second-order rate constants <102 M−1 s−1 (slowly reacting) persisted to a large extent. With a medium ozone dose, only 11 micropollutants of 55 detected in the ...

775 citations


Journal ArticleDOI
TL;DR: Recent evidence is reviewed indicating that variability in the completeness of speciation can also be associated with the nature of divergent selection itself, with speciation being greatly promoted by (i) stronger selection on a given, single trait (the 'stronger selection' hypothesis) and (ii) Selection on a greater number of traits ( the 'multifarious selection' hypotheses).
Abstract: Divergent natural selection has been shown to promote speciation in many taxa. However, although divergent selection often initiates the process of speciation, it often fails to complete it. Several time-based, geographic and genetic factors have been recognized to explain this variability in how far speciation proceeds. We review here recent evidence indicating that variability in the completeness of speciation can also be associated with the nature of divergent selection itself, with speciation being greatly promoted by (i) stronger selection on a given, single trait (the 'stronger selection' hypothesis) and (ii) selection on a greater number of traits (the 'multifarious selection' hypothesis). However, evidence for each selective hypothesis is still scarce, and further work is required to determine their relative importance.

656 citations


Journal ArticleDOI
TL;DR: It is concluded that larvae of the black soldier fly are potentially capable of converting large amounts of organic waste into protein-rich biomass to substitute fishmeal, thereby contributing to sustainable aquaculture.

532 citations


Journal ArticleDOI
TL;DR: The N : P ratio of nutrients available to decomposers appears to be an important determinant of plant litter decomposition, the relative importance of fungi and bacteria in litter-associated microbial communities, and litter nutrient dynamics.
Abstract: Summary 1Nitrogen and phosphorus supply influences the rate of litter decomposition and nutrient dynamics during decomposition. Besides the total amount of N and P available to decomposers, their relative supply (N : P ratio) might be important, e.g. through an influence on the composition and activity of microbial communities. 2We carried out two experiments using laboratory microcosms to test that (i) N : P ratios (in either litter or the environment) determine whether N or P limits the rate of decomposition, (ii) the ‘critical’ N : P ratio between N and P limitation depends on overall nutrient availability, (iii) litter colonization by fungi and bacteria depends on the N : P ratio, and (iv) N : P ratios determine if proportionately more N or P is retained or immobilized by the litter. 3In one experiment, cellulose as a nutrient-free litter analogue was incubated on sand fertilized with varying N : P supply ratios, whereas in a second experiment, Carex leaf litter with varying N : P ratios was incubated on nutrient-free sand. 4Results essentially support our hypotheses. Cellulose decomposition was N- or P-limited depending on the N : P supply ratio. The shift from N to P limitation occurred at N : P supply ratios of 1·7–45, depending on overall nutrient supply. Bacteria were most abundant on cellulose at low N : P supply ratios, when decomposition was N-limited, while fungi were relatively more important at high N : P ratios, when decomposition was P-limited. The amounts of mineral N and P immobilized on cellulose and those released from litter, both in absolute terms and relative to supply, depended on the type of nutrient limitation (N vs. P). 5The N : P ratio of nutrients available to decomposers appears to be an important determinant of plant litter decomposition, the relative importance of fungi and bacteria in litter-associated microbial communities, and litter nutrient dynamics.

458 citations


Journal ArticleDOI
TL;DR: It can be concluded that there are good prospects for decentralized systems based on membranes, but that a need exists for research and development of systems with low costs and low maintenance, specifically designed for DC and TC.

437 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used a hydrologic model of Iran to study the impact of future climate on the country's water resources using the Soil and Water Assessment Tool (SWAT) model and calibrated using daily river discharges and annual wheat yield data at a subbasin level.
Abstract: [1] As water resources become further stressed due to increasing levels of societal demand, understanding the effect of climate change on various components of the water cycle is of strategic importance in management of this essential resource. In this study, we used a hydrologic model of Iran to study the impact of future climate on the country's water resources. The hydrologic model was created using the Soil and Water Assessment Tool (SWAT) model and calibrated for the period from 1980 to 2002 using daily river discharges and annual wheat yield data at a subbasin level. Future climate scenarios for periods of 2010–2040 and 2070–2100 were generated from the Canadian Global Coupled Model (CGCM 3.1) for scenarios A1B, B1, and A2, which were downscaled for 37 climate stations across the country. The hydrologic model was then applied to these periods to analyze the effect of future climate on precipitation, blue water, green water, and yield of wheat across the country. For future scenarios we found that in general, wet regions of the country will receive more rainfall while dry regions will receive less. Analysis of daily rainfall intensities indicated more frequent and larger-intensity floods in the wet regions and more prolonged droughts in the dry regions. When aggregated to provincial levels, the differences in the predictions due to the three future scenarios were smaller than the uncertainty in the hydrologic model. However, at the subbasin level the three climate scenarios produced quite different results in the dry regions of the country, although the results in the wet regions were more or less similar.

428 citations


Journal ArticleDOI
TL;DR: Major recommendations for future research in this area include proper consideration of uncertainty in scenario studies in particular in relation to stakeholder relevant information, construction of scenarios that are more diverse in nature, and sharing of information and resources among the scenario development research community.
Abstract: Scenarios are possible future states of the world that represent alternative plausible conditions under different assumptions. Often, scenarios are developed in a context relevant to stakeholders involved in their applications since the evaluation of scenario outcomes and implications can enhance decision-making activities. This paper reviews the state-of-the-art of scenario development and proposes a formal approach to scenario development in environmental decision-making. The discussion of current issues in scenario studies includes advantages and obstacles in utilizing a formal scenario development framework, and the different forms of uncertainty inherent in scenario development, as well as how they should be treated. An appendix for common scenario terminology has been attached for clarity. Major recommendations for future research in this area include proper consideration of uncertainty in scenario studies in particular in relation to stakeholder relevant information, construction of scenarios that are more diverse in nature, and sharing of information and resources among the scenario development research community.

357 citations


Journal ArticleDOI
TL;DR: In this article, the authors compared the burial efficiency of organic carbon (buried OC: deposited OC) in a diverse set of 27 different sediments from 11 lakes, focusing on the potential effects of organic matter source, oxygen exposure, and protective sorption of OC onto mineral surfaces.
Abstract: We compared the burial efficiency of organic carbon (buried OC: deposited OC) in a diverse set of 27 different sediments from 11 lakes, focusing on the potential effects of organic matter source, oxygen exposure, and protective sorption of OC onto mineral surfaces. Average OC burial efficiency was high (mean 48%), and it was particularly high in sediments receiving high input of allochthonous organic matter (mean 67%). Further, OC burial efficiency was strongly negatively related to the oxygen exposure time, again particularly so in sediments receiving high allochthonous loads. On the other hand, OC burial efficiency was not related to the mineral surface area, which was used as a proxy of the sorption capacity of the mineral phase for OC. The high OC burial efficiency in many lake sediments can thus be attributed to the frequent and significant input of allochthonous organic matter to lakes, as well as to a strong dependence of OC burial efficiency on oxygen exposure time. This study demonstrates that the carbon sink in lake sediments alters the OC export from the continents to the sea and that the fate of OC in lake sediments (burial vs. mineralization to carbon dioxide and methane) is highly sensitive to environmental conditions.

343 citations


Journal ArticleDOI
30 Apr 2009-Nature
TL;DR: It is demonstrated that adaptive radiation, even over short timescales, can have profound effects on ecosystems, as well as the complex and indirect consequences of ecosystem engineering by sticklebacks.
Abstract: Explaining the ecological causes of evolutionary diversification is a major focus of biology, but surprisingly little has been said about the effects of evolutionary diversification on ecosystems. The number of species in an ecosystem and their traits are key predictors of many ecosystem-level processes, such as rates of productivity, biomass sequestration and decomposition. Here we demonstrate short-term ecosystem-level effects of adaptive radiation in the threespine stickleback (Gasterosteus aculeatus) over the past 10,000 years. These fish have undergone recent parallel diversification in several lakes in coastal British Columbia, resulting in the formation of two specialized species (benthic and limnetic) from a generalist ancestor. Using a mesocosm experiment, we demonstrate that this diversification has strong effects on ecosystems, affecting prey community structure, total primary production, and the nature of dissolved organic materials that regulate the spectral properties of light transmission in the system. However, these ecosystem effects do not simply increase in their relative strength with increasing specialization and species richness; instead, they reflect the complex and indirect consequences of ecosystem engineering by sticklebacks. It is well known that ecological factors influence adaptive radiation. We demonstrate that adaptive radiation, even over short timescales, can have profound effects on ecosystems.

Journal ArticleDOI
TL;DR: Fe(VI) is demonstrated as a promising tool for an enhanced wastewater treatment to remove micropollutants as well as to control phosphate in a single treatment step.
Abstract: A novel technology for enhanced municipal wasterwater treatment was assessed based on the dual functions of Fe(VI) to oxidize micropollutants and remove phosphate by formation of ferric phosphates. Second-order rate constants (k) for the reactions of selected pharmaceuticals, endocrine disruptors, and organic model compounds with Fe(VI) were in the range of 1 (trimethylamine) to 9000 M(-1) s(-1) (aniline) in the pH-range 7-8. The selected compounds contained electron-rich moieties (ERM) such as phenols, anilines, amines, and olefins. Oxidation experiments in wastewater spiked with micropollutants at concentrations in the low microM range at pH 7 and 8 showed that Fe(VI) doses higher than 5 mg Fe L(-1) are capable of eliminating various ERM-containing micropollutants by more than 85%. In comparison to ozone, Fe(VI) was as effective or slightly less effective in terms of micropollutants oxidation, with Fe(VI) having the benefit of phosphate removal. To lower phosphate from 3.5 to 0.8 mg PO4-P L(-1) (regulatory limit for wastewater discharge in Switzerland), a Fe(VI) dose of 7.5 mg Fe L(-1) was needed. Overall, this study demonstrates Fe(VI) as a promising tool for an enhanced wastewater treatment to remove micropollutants as well as to control phosphate in a single treatment step.

Journal ArticleDOI
TL;DR: In this article, the authors used SWAT and SUFI-2 to calibrate and validate a hydrologic model of Iran based on river discharges and wheat yield, taking into consideration dam operations and irrigation practices.
Abstract: Knowledge of the internal renewable water resources of a country is strategic information which is needed for long-term planning of a nation's water and food security, among many other needs. New modelling tools allow this quantification with high spatial and temporal resolution. In this study we used the program Soil and Water Assessment Tool (SWAT) in combination with the Sequential Uncertainty Fitting program (SUFI-2) to calibrate and validate a hydrologic model of Iran based on river discharges and wheat yield, taking into consideration dam operations and irrigation practices. Uncertainty analyses were also performed to assess the model performance. The results were quite satisfactory for most of the rivers across the country. We quantified all components of the water balance including blue water flow (water yield plus deep aquifer recharge), green water flow (actual and potential evapotranspiration) and green water storage (soil moisture) at sub-basin level with monthly time-steps. The spatially aggregated water resources and simulated yield compared well with the existing data. The study period was 1990–2002 for calibration and 1980–1989 for validation. The results show that irrigation practices have a significant impact on the water balances of the provinces with irrigated agriculture. Concerning the staple food crop in the country, 55% of irrigated wheat and 57% of rain-fed wheat are produced every year in water-scarce regions. The vulnerable situation of water resources availability has serious implications for the country's food security, and the looming impact of climate change could only worsen the situation. This study provides a strong basis for further studies concerning the water and food security and the water resources management strategies in the country and a unified approach for the analysis of blue and green water in other arid and semi-arid countries. Copyright © 2008 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: Overall, the rather low number of TPs detected suggests that TPs may not pose a problem of unexpected magnitude for aquatic resources.
Abstract: Transformation products (TPs) of organic contaminants in aquatic environments are still rarely considered in water quality and chemical risk assessment, although they have been found in concentrations that are of concern. Since many different TPs can potentially be formed in the environment and analytical standards are typically lacking for these compounds, knowledge on the prevalence of TPs in aquatic environments is fragmentary. In this study, an efficient procedure was therefore developed to comprehensively screen for large numbers of potential TPs in environmental samples. It is based on a target list of plausible TPs that has been assembled using the University of Minnesota Pathway Prediction System (UM-PPS) for the computer-aided prediction of products of microbial metabolism and an extensive search for TPs reported in the scientific literature. The analytical procedure for screening of the compounds on the target list has been developed to allow for the detection of a broad range of compounds in co...

Journal ArticleDOI
TL;DR: The results from full-scale measurements and modeling indicate that biological transformation in the nitrification tank together with parameters such as the sludge retention time and the temperature is crucial regarding the biological transformation of beta blockers and psycho-active drugs in conventional WWTPs.

Journal ArticleDOI
TL;DR: The example of urine reveals the large potential of source separation technologies for sustainable and resource efficient future urban wastewater management.
Abstract: The example of urine reveals the large potential of source separation technologies for sustainable and resource efficient future urban wastewater management.

Journal ArticleDOI
TL;DR: With few exceptions, it can be expected that municipal wastewater ozonation will generally yield sufficient structural modification of antibacterial molecules to eliminate their antibacterial activities, whether oxidation results from selective reactions with O3 or from relatively nonselective reactions with incidentally produced OH.
Abstract: A wide variety of antibacterial compounds is rapidly oxidized by 03 and hydroxyl radical (*OH) during aqueous ozonation. Quantitative microbiological assays have been developed here or adapted from existing methods and utilized to measure the resulting changes in antibacterial potencies during O3 and *OH treatment of 13 antibacterial molecules (roxithromycin, azithromycin, tylosin, ciprofloxacin, enrofloxacin, penicillin G, cephalexin, sulfamethoxazole, trimethoprim, lincomycin,tetracycline, vancomycin, and amikacin) from 9 structural classes (macrolides, fluoroquinolones, beta-lactams, sulfonamides, dihydrofolate reductase inhibitors, lincosamides, tetracyclines, glycopeptides, and aminoglycosides), as well as the biocide triclosan. Potency measurements were determined from dose-response relationships obtained by exposing Escherichia coli or Bacillus subtilis reference strains to treated samples of each antibacterial compound via broth micro- or macrodilution assays and related to the measured residual concentrations of parent antibacterial in each sample. Data obtained from these experiments show that O3 and *OH reactions lead in nearly all cases to stoichiometric elimination of antibacterial activity (i.e., loss of 1 mole equivalent of potency per mole of parent compound consumed). The beta-lactams penicillin G (PG) and cephalexin (CP) represent the only clear exceptions, as bioassay measurements indicate that biologically active products may be formed in the reactions of these two compounds with both O3 and *OH. The active product(s) generated in the direct reaction of O3 with PG appear(s) to be recalcitrant to further transformation by O3, though any biologically active products formed in the reactions of CP with O3, or of either PG or CP with *OH, are apparently deactivated by further reactions with O3 or *OH, respectively. Thus, with few exceptions, it can be expected that municipal wastewater ozonation will generally yield sufficient structural modification of antibacterial molecules to eliminate their antibacterial activities, whether oxidation results from selective reactions with O3 or from relatively nonselective reactions with incidentally produced OH.

Journal ArticleDOI
TL;DR: In this article, the authors estimate both the blue and green water components of consumptive water use (CWU) for a wide range of agricultural crops, including seven cereal crops, cassava, cotton, groundnuts, potatoes, pulses, rapeseed, soybeans, sugar beets, sugarcane, and sunflower, with a spatial resolution of 30 arc min on the land surface.
Abstract: [1] Over the last 4 decades the use of blue water has received increasing attention in water resources research, but little attention has been paid to the quantification of green water in food production and food trade. In this paper, we estimate both the blue and green water components of consumptive water use (CWU) for a wide range of agricultural crops, including seven cereal crops, cassava, cotton, groundnuts, potatoes, pulses, rapeseed, soybeans, sugar beets, sugarcane, and sunflower, with a spatial resolution of 30 arc min on the land surface. The results show that the global CWU of these crops amounted to 3823 km3 a−1 for the period 1998–2002. More than 80% of this amount was from green water. Around 94% of the world crop-related virtual water trade has its origin in green water, which generally constitutes a low-opportunity cost of green water as opposed to blue water. High levels of net virtual water import (NVWI) generally occur in countries with low CWU on a per capita basis, where a virtual water strategy is an attractive water management option to compensate for domestic water shortage for food production. NVWI is constrained by income; low-income countries generally have a low level of NVWI. Strengthening low-income countries economically will allow them to develop a virtual water strategy to mitigate malnutrition of their people.

Journal ArticleDOI
TL;DR: It is found that, within 7–10 years, the most common clones were almost completely replaced by initially rare clones in two different habitats, while sexuals persisted throughout the study period, consistent with the Red Queen hypothesis and show that the coevolutionary dynamics predicted by the theory may also favor sexual reproduction in natural populations.
Abstract: Sexual populations should be vulnerable to invasion and replacement by ecologically similar asexual females because asexual lineages have higher per capita growth rates. However, as asexual genotypes become common, they may also become disproportion- ately infected by parasites. The Red Queen hypothesis postulates that high infection rates in the common asexual clones could periodically favor the genetically diverse sexual individuals and promote the short-term coexistence of sexual and asexual populations. Testing this idea requires comparison of competing sexual and asexual lin- eages that are attacked by natural parasites. To date no such data have been available. Here, we report on long-term dynamics and parasite coevolution in a "mixed" (sexual and asexual) population of snails (Potamopyrgus antipodarum). We found that, within 7-10 years, the most common clones were almost completely replaced by initially rare clones in two different habitats, while sexuals persisted throughout the study period. The common clones, which were ini- tially more resistant to infection, also became more susceptible to infection by sympatric (but not allopatric) parasites over the course of the study. These results are consistent with the Red Queen hy- pothesis and show that the coevolutionary dynamics predicted by the theory may also favor sexual reproduction in natural populations.

Journal ArticleDOI
TL;DR: It was shown that biological transformation was the main elimination process while adsorption to the activated sludge was negligible for most substances due to the low sludge production at high sludge retention time, and no appreciable lag for inducing biological degradation was observed.

Journal ArticleDOI
TL;DR: In this paper, the authors used new cosmic ray and nuclear data to estimate particle fluxes in the atmosphere and used them in concert with experimental or evaluated cross sections to calculate the production rates of 3H, 7Be, 10Be, 14C, and 36Cl.
Abstract: [1] Since the publication of our first paper devoted to this subject, we have extended our model, using new cosmic ray and nuclear data. Therefore, we revised particle fluxes in the atmosphere and used them in concert with experimental or evaluated cross sections to calculate the production rates of 3H, 7Be, 10Be, 14C, and 36Cl. The dependencies of these production rates on solar activity and geomagnetic field intensity were investigated in detail. Our simulations cover a whole range of these two parameters observed in the past. Comparison of the production rates calculated from two of the most frequently used primary galactic cosmic ray spectra showed weak dependence on the shape of the spectra. Alpha particles were included in the simulations for the first time, and we showed that the previously used scheme for estimation of alpha particle contribution to the total production rates is more complicated and latitude dependent. The production rates obtained agree well with most published experimental values.

Journal ArticleDOI
TL;DR: Large stoichiometric imbalances and changes in resource quality are likely to have serious consequences for stream ecosystem functioning, especially when riparian zones have been invaded by exotic plant species whose chemical composition differs markedly from that of the native flora.
Abstract: SUMMARY 1. Resource quality and stoichiometric imbalances in carbon : nutrient ratios between consumers and resources can influence key ecosystem processes. In many streams, this has important implications for food webs that are based largely upon the utilization of terrestrial leaf-litter, which varies widely among litter types in its value as a food source for detritivores and as a substrate for microbial decomposers. 2. We measured breakdown rates and macroinvertebrate colonization of leaf-litter from a range of native and exotic plants of differing resource quality and palatability to consumers [e.g. carbon : nitrogen : phosphorus (C : N : P) ratios, lignin and cellulose content], in a field experiment. We also measured C : N : P ratios of the principal leafshredding invertebrates, which revealed strong stoichiometric imbalances across trophic levels: C : N and C : P ratios typically differed by at least one order of magnitude between consumers and resources, whereas N : P imbalances were less marked. Application of the threshold elemental ratio approach, which integrates animal bioenergetics and body elemental composition in examining nutrient deficiency between consumers and resources, revealed less marked C : P imbalances than those based on the simpler arithmetic differences described above. 3. Litter breakdown rates declined as nutrient imbalances widened and resource quality fell, but they were independent of whether resources were exotic or native. The principal drivers of total, microbial and invertebrate-mediated breakdown rates were lignin : N, lignin : P and fungal biomass, respectively. However, multiple regression using orthogonal predictors yielded even more efficient models of litter breakdown, as consumers responded to more than one aspect of resource quality. For example, fungal biomass and litter C : N both influenced invertebrate-mediated breakdown. 4. Large stoichiometric imbalances and changes in resource quality are likely to have serious consequences for stream ecosystem functioning, especially when riparian zones have been invaded by exotic plant species whose chemical composition differs markedly from that of the native flora. Consequently, the magnitude and direction of change in breakdown rates and, thus, resource depletion, will be driven to a large extent by the

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the land and water requirements of biofuel in China with reference to the government biofuel development plans for 2010 and 2020, and showed that the current level of bioethanol production consumes 3.5-4% of total maize production of the country, reducing market availability of maize for other uses by about 6%.

Journal ArticleDOI
TL;DR: The combination of UV-induced enhancement of DOM bioavailability and increased export of terrigeneous DOM into estuaries and coastal waters due to climate-related changes in continental hydrology could result in a UV-mediated positive feedback of CO2 accumulation in the atmosphere as discussed by the authors.
Abstract: UV-induced transformations of colored dissolved organic matter (CDOM, which is part of dissolved organic matter, DOM) affect CDOM absorption properties resulting in the loss of color (referred to as photobleaching). CDOM photobleaching increases the penetration depths of the damaging UV-B radiation into water bodies and strongly depends on the wavelength of solar radiation and on the pH of aquatic systems. UV-induced transformations also affect DOM availability to bacterioplankton, often enhancing the bioavailability of terrigenous DOM and in turn microbial respiration. The combination of UV-induced enhancement of DOM bioavailability and increased export of terrigeneous DOM into estuaries and coastal waters due to climate-related changes in continental hydrology could result in a UV-mediated positive feedback of CO2 accumulation in the atmosphere.

Journal ArticleDOI
01 Jan 2009-Ecology
TL;DR: The effect of temperature oscillations on decomposition in the authors' warming scenario was caused by strong curvilinear responses of species to warming at low temperature, particularly of the species becoming most abundant at 8 degrees C (Tetracladium marchalianum).
Abstract: Diel temperature oscillations are a nearly ubiquitous phenomenon, with amplitudes predicted to change along with mean temperatures under global-warming scenarios. Impact assessments of global warming have largely disregarded diel temperature oscillations, even though key processes in ecosystems, such as decomposition, may be affected. We tested the effect of a 5 degrees C temperature increase with and without diel oscillations on litter decomposition by fungal communities in stream microcosms. Five temperature regimes with identical thermal sums (degree days) were applied: constant 3 degrees and 8 degrees C; diel temperature oscillations of 5 degrees C around each mean; and oscillations of 9 degrees C around 8 degrees C. Temperature oscillations around 8 degrees C (warming scenario), but not 3 degrees C (ambient scenario), accelerated decomposition by 18% (5 degrees C oscillations) and 31% (9 degrees C oscillations), respectively, compared to the constant temperature regime at 8 degrees C. Community structure was not affected by oscillating temperatures, although the rise in mean temperature from 3 degrees to 8 degrees C consistently shifted the relative abundance of species. A simple model using temperature-growth responses of the dominant fungal decomposers accurately described the experimentally observed pattern, indicating that the effect of temperature oscillations on decomposition in our warming scenario was caused by strong curvilinear responses of species to warming at low temperature, particularly of the species becoming most abundant at 8 degrees C (Tetracladium marchalianum). These findings underscore the need to consider species-specific temperature characteristics in concert with changes in communities when assessing consequences of global warming on ecosystem processes.

Journal ArticleDOI
TL;DR: The analysis demonstrates that the potential impact hybridization may have on phenotypic evolution is predictable from the genetic distance between species.
Abstract: Interspecific hybridization can generate transgressive hybrid phenotypes with extreme trait values exceeding the combined range of the parental species. Such variation can enlarge the working surface for natural selection, and may facilitate the evolution of novel adaptations where ecological opportunity exists. The number of quantitative trait loci fixed for different alleles in different species should increase with time since speciation. If transgression is caused by complementary gene action or epistasis, hybrids between more distant species should be more likely to display transgressive phenotypes. To test this prediction we collected data on transgression frequency from the literature, estimated genetic distances between the hybridizing species from gene sequences, and calculated the relationship between the two using phylogenetically controlled methods. We also tested if parental phenotypic divergence affected the occurrence of transgression. We found a highly significant positive correlation between transgression frequency and genetic distance in eudicot plants explaining 43% of the variance in transgression frequency. In total, 36% of the measured traits were transgressive. The predicted effect of time since speciation on transgressive segregation was unconfounded by the potentially conflicting effects of phenotypic differentiation between species. Our analysis demonstrates that the potential impact hybridization may have on phenotypic evolution is predictable from the genetic distance between species.

Journal ArticleDOI
TL;DR: Differential gene expression and coding sequence evolution play complementary roles in the adaptive diversification of cichlid sensory systems.
Abstract: A major goal of evolutionary biology is to unravel the molecular genetic mechanisms that underlie functional diversification and adaptation. We investigated how changes in gene regulation and coding sequence contribute to sensory diversification in two replicate radiations of cichlid fishes. In the clear waters of Lake Malawi, differential opsin expression generates diverse visual systems, with sensitivities extending from the ultraviolet to the red regions of the spectrum. These sensitivities fall into three distinct clusters and are correlated with foraging habits. In the turbid waters of Lake Victoria, visual sensitivity is constrained to longer wavelengths, and opsin expression is correlated with ambient light. In addition to regulatory changes, we found that the opsins coding for the shortest- and longest-wavelength visual pigments have elevated numbers of potentially functional substitutions. Thus, we present a model of sensory evolution in which both molecular genetic mechanisms work in concert. Changes in gene expression generate large shifts in visual pigment sensitivity across the collective opsin spectral range, but changes in coding sequence appear to fine-tune visual pigment sensitivity at the short- and long-wavelength ends of this range, where differential opsin expression can no longer extend visual pigment sensitivity.

Journal ArticleDOI
TL;DR: In this paper, the authors collected 50 seismic profiles with a total length of similar to 850 km to identify continuous undisturbed sedimentary sequences for potential ICDP locations, and cored 10 different locations to water depths of up to 420 m.

Journal ArticleDOI
TL;DR: In this article, the authors measured 10Be at annual resolution over the last 600 years in a Greenland ice core and showed that 10Be levels indicate that although solar activity has been high during the 20th century, levels are not unprecedented in the investigated 600 years.
Abstract: Understanding the link between the Sun and climate is vital in the current incidence of global climate change, and 10Be in natural archives constitutes an excellent tracer for this purpose. As cosmic rays enter the atmosphere, cosmogenic isotopes like 10Be and 14C are formed. Variations in solar activity modulate the amount of incoming cosmic rays, and thereby cosmogenic isotope production. Atmospherically produced 10Be enters natural archives such as sediments and glaciers by wet and dry deposition within about a year of production. 10Be from natural archives therefore provides information on past solar activity, and because these archives also contain climate information, solar activity and climate can be linked. One remaining question is to what degree 10Be in natural archives reflects production, and to what extent the local and regional environment overprints the production signal. To explore this, 10Be was measured at annual resolution over the last 600 years in a Greenland ice core. Measurement potentials for these samples benefited from the development of a new laboratory method of co-precipitating 10Be with niobium. To diversify geographic location and archive media type, a pioneer study of measuring 10Be with annual resolution in varved lake sediments from Finland was conducted, with samples from the entire 20th century. Pathways of 10Be into lake sediments are more complex than into glacial ice, inferring that contemporary atmospheric conditions may not be recorded. Here, it is shown for the first time that tracing the 11-year solar cycle through lake sediment 10Be variations is possible. Results also show that on an annual basis, 10Be deposition in ice and sediment archives is affected by local environmental conditions. On a slightly longer timescale, however, diverse 10Be records exhibit similar trends and a negative correlation with solar activity. Cyclic variability of 10Be deposition persisted throughout past grand solar minima, when little or no sunspot activity was recorded. 10Be levels indicate that although solar activity has been high during the 20th century, levels are not unprecedented in the investigated 600 years. Aerosol 10Be/7Be values indicate possible influence of stratosphere-troposphere exchange on isotope abundance and the production signal.

Journal ArticleDOI
TL;DR: It is shown for the first time that LNA bacteria can be isolated and cultivated by using sterile freshwater as a growth medium and are among the smallest free-living heterotrophic organisms known in culture.
Abstract: Most planktonic bacteria are 'uncultivable' with conventional methods. Flow cytometry (FCM) is one approach that has been taken to study these bacteria. In natural aquatic environments, bacteria with high nucleic acid (HNA) and low nucleic acid (LNA) content are commonly observed with FCM after staining with fluorescent dyes. Although several studies have focused on the relative abundance and in situ activities of these two groups, knowledge on the growth of particularly LNA bacteria is largely limited. In this study, typical LNA bacteria were enriched from three different freshwater sources using extinction dilution (ED) and fluorescence-activated cell sorting (FACS). We have shown for the first time that LNA bacteria can be isolated and cultivated by using sterile freshwater as a growth medium. During growth, the typical LNA characteristics (that is, low-fluorescence intensity and sideward scatter (SSC)) remained distinct from those of typical HNA bacteria. Three LNA pure cultures that are closely affiliated to the Polynucleobacter cluster according to 16S rRNA sequencing results were isolated. Owing to their small size, cells of the isolates remained intact during cryo-transmission electronic microscopy examination and showed a Gram-negative cell-wall structure. The extremely small cell volume (0.05 microm3) observed for all three isolates indicates that they are among the smallest free-living heterotrophic organisms known in culture. Their isolation and cultivation allow further detailed investigation of this group of organisms under defined laboratory conditions.