scispace - formally typeset
Search or ask a question

Showing papers by "Swiss Federal Institute of Aquatic Science and Technology published in 2020"


Journal ArticleDOI
TL;DR: This Critical Review comparatively examines the activation mechanisms of peroxymonosulfate and peroxydisulfates and the formation pathways of oxidizing species and the impacts of water parameters and constituents such as pH, background organic matter, halide, phosphate, and carbonate on persulfate-driven chemistry.
Abstract: Reports that promote persulfate-based advanced oxidation process (AOP) as a viable alternative to hydrogen peroxide-based processes have been rapidly accumulating in recent water treatment literature. Various strategies to activate peroxide bonds in persulfate precursors have been proposed and the capacity to degrade a wide range of organic pollutants has been demonstrated. Compared to traditional AOPs in which hydroxyl radical serves as the main oxidant, persulfate-based AOPs have been claimed to involve different in situ generated oxidants such as sulfate radical and singlet oxygen as well as nonradical oxidation pathways. However, there exist controversial observations and interpretations around some of these claims, challenging robust scientific progress of this technology toward practical use. This Critical Review comparatively examines the activation mechanisms of peroxymonosulfate and peroxydisulfate and the formation pathways of oxidizing species. Properties of the main oxidizing species are scrutinized and the role of singlet oxygen is debated. In addition, the impacts of water parameters and constituents such as pH, background organic matter, halide, phosphate, and carbonate on persulfate-driven chemistry are discussed. The opportunity for niche applications is also presented, emphasizing the need for parallel efforts to remove currently prevalent knowledge roadblocks.

1,412 citations


Journal ArticleDOI
TL;DR: Although a number of assumptions need to be reexamined, like age structure in social mixing patterns and in the distribution of mobility, hospitalization, and fatality, it is concluded that verifiable evidence exists to support the planning of emergency measures.
Abstract: The spread of coronavirus disease 2019 (COVID-19) in Italy prompted drastic measures for transmission containment. We examine the effects of these interventions, based on modeling of the unfolding epidemic. We test modeling options of the spatially explicit type, suggested by the wave of infections spreading from the initial foci to the rest of Italy. We estimate parameters of a metacommunity Susceptible-Exposed-Infected-Recovered (SEIR)-like transmission model that includes a network of 107 provinces connected by mobility at high resolution, and the critical contribution of presymptomatic and asymptomatic transmission. We estimate a generalized reproduction number ([Formula: see text] = 3.60 [3.49 to 3.84]), the spectral radius of a suitable next-generation matrix that measures the potential spread in the absence of containment interventions. The model includes the implementation of progressive restrictions after the first case confirmed in Italy (February 21, 2020) and runs until March 25, 2020. We account for uncertainty in epidemiological reporting, and time dependence of human mobility matrices and awareness-dependent exposure probabilities. We draw scenarios of different containment measures and their impact. Results suggest that the sequence of restrictions posed to mobility and human-to-human interactions have reduced transmission by 45% (42 to 49%). Averted hospitalizations are measured by running scenarios obtained by selectively relaxing the imposed restrictions and total about 200,000 individuals (as of March 25, 2020). Although a number of assumptions need to be reexamined, like age structure in social mixing patterns and in the distribution of mobility, hospitalization, and fatality, we conclude that verifiable evidence exists to support the planning of emergency measures.

948 citations


Journal ArticleDOI
22 May 2020-Science
TL;DR: A global model for predicting groundwater arsenic levels suggests that 94 million to 220 million people are potentially exposed to high arsenic concentrations in groundwater, the vast majority of which are in Asia.
Abstract: Naturally occurring arsenic in groundwater affects millions of people worldwide. We created a global prediction map of groundwater arsenic exceeding 10 micrograms per liter using a random forest machine-learning model based on 11 geospatial environmental parameters and more than 50,000 aggregated data points of measured groundwater arsenic concentration. Our global prediction map includes known arsenic-affected areas and previously undocumented areas of concern. By combining the global arsenic prediction model with household groundwater-usage statistics, we estimate that 94 million to 220 million people are potentially exposed to high arsenic concentrations in groundwater, the vast majority (94%) being in Asia. Because groundwater is increasingly used to support growing populations and buffer against water scarcity due to changing climate, this work is important to raise awareness, identify areas for safe wells, and help prioritize testing.

541 citations


Journal ArticleDOI
TL;DR: This commentary draws on the lessons of the policy sciences literature to understand the dynamics related to COVID-19, exploring the ways in which scientific and technical expertise, emotions, and narratives influence policy decisions and shape relationships among citizens, organizations, and governments.
Abstract: The world is in the grip of a crisis that stands unprecedented in living memory. The COVID-19 pandemic is urgent, global in scale, and massive in impacts. Following Harold D. Lasswell's goal for the policy sciences to offer insights into unfolding phenomena, this commentary draws on the lessons of the policy sciences literature to understand the dynamics related to COVID-19. We explore the ways in which scientific and technical expertise, emotions, and narratives influence policy decisions and shape relationships among citizens, organizations, and governments. We discuss varied processes of adaptation and change, including learning, surges in policy responses, alterations in networks (locally and globally), implementing policies across transboundary issues, and assessing policy success and failure. We conclude by identifying understudied aspects of the policy sciences that deserve attention in the pandemic's aftermath.

369 citations


Journal ArticleDOI
01 Jan 2020
TL;DR: In this article, the authors present a risk assessment and management framework tailored to SARS-CoV-2 transmission via wastewater, including new tools for environmental surveillance, ensuring adequate disinfection as a component of overall COVID-19 pandemic containment.
Abstract: The COVID-19 pandemic has severely impacted public health and the worldwide economy Converging evidence from the current pandemic, previous outbreaks and controlled experiments indicates that SARS-CoVs are present in wastewater for several days, leading to potential health risks via waterborne and aerosolized wastewater pathways Conventional wastewater treatment provides only partial removal of SARS-CoVs, thus safe disposal or reuse will depend on the efficacy of final disinfection This underscores the need for a risk assessment and management framework tailored to SARS-CoV-2 transmission via wastewater, including new tools for environmental surveillance, ensuring adequate disinfection as a component of overall COVID-19 pandemic containment Converging evidence indicates that SARS-CoVs are present in wastewater for several days with potential health risks This Review analyses knowledge about such risks as well as the potential spread of SARS-CoVs in waterborne, waterborne–aerosolized and waterborne–foodborne pathways during a pandemic

189 citations


Journal ArticleDOI
TL;DR: The effects of sulfur on the crystalline structure, hydrophobicity, sulfur speciation, corrosion potential, and electron transfer resistance are determined and can guide the rational design of robust SNZVI with properties tailored for specific application scenarios.
Abstract: Sulfidized nanoscale zerovalent iron (SNZVI) is a promising material for groundwater remediation. However, the relationships between sulfur content and speciation and the properties of SNZVI materials are unknown, preventing rational design. Here, the effects of sulfur on the crystalline structure, hydrophobicity, sulfur speciation, corrosion potential, and electron transfer resistance are determined. Sulfur incorporation extended the nano-Fe0 BCC lattice parameter, reduced the Fe local vacancies, and lowered the resistance to electron transfer. Impacts of the main sulfur species (FeS and FeS2 ) on hydrophobicity (water contact angles) are consistent with density functional theory calculations for these FeSx phases. These properties well explain the reactivity and selectivity of SNZVI during the reductive dechlorination of trichloroethylene (TCE), a hydrophobic groundwater contaminant. Controlling the amount and speciation of sulfur in the SNZVI made it highly reactive (up to 0.41 L m-2 d-1 ) and selective for TCE degradation over water (up to 240 moles TCE per mole H2 O), with an electron efficiency of up to 70%, and these values are 54-fold, 98-fold, and 160-fold higher than for NZVI, respectively. These findings can guide the rational design of robust SNZVI with properties tailored for specific application scenarios.

170 citations


Journal ArticleDOI
TL;DR: Policymakers must carefully evaluate under which contexts incentives to replace certain microplastics can stimulate innovation of new, more competitive and environmentally conscious materials.
Abstract: The presence of plastic in the environment has sparked discussion amongst scientists, regulators and the general public as to how industrialization and consumerism is shaping our world. Here we discuss restrictions on the intentional use of primary microplastics: small solid polymer particles in applications ranging from agriculture to cosmetics. Microplastic hazards are uncertain, and actions are not similarly prioritized by all actors. In some instances, replacement is technically simple and easily justified, but in others substitutions may come with more uncertainty, performance questions and costs. Scientific impact assessment of primary microplastics compared to their alternatives relies on a number of factors, such as microplastic harm, existence of replacement materials and the quality, cost and hazards of alternative materials. Regulations need a precise focus and must be enforceable by these measurements. Policymakers must carefully evaluate under which contexts incentives to replace certain microplastics can stimulate innovation of new, more competitive and environmentally conscious materials.

163 citations


Journal ArticleDOI
TL;DR: A group of international experts, members of the NEREUS COST Action ES1403, who for three years have been constructively discussing the efficiency of the best available technologies (BATs) for urban wastewater treatment to abate CECs and ARB&ARGs are gathered.

144 citations


Journal ArticleDOI
TL;DR: By quantifying metabolic interactions between individual cells in synthetic microbial communities, the authors show that interactions are extremely localized, and that the spatial scale of interactions influences community dynamics.
Abstract: Communities of interacting microorganisms play important roles across all habitats on Earth. These communities typically consist of a large number of species that perform different metabolic processes. The functions of microbial communities ultimately emerge from interactions between these different microorganisms. To understand the dynamics and functions of microbial communities, we thus need to know the nature and strength of these interactions. Here, we quantified the interaction strength between individual cells in microbial communities. We worked with synthetic communities of Escherichia coli bacteria that exchange metabolites to grow. We combined single-cell growth rate measurements with mathematical modelling to quantify metabolic interactions between individual cells and to map the spatial interaction network in these communities. We found that cells only interact with other cells in their immediate neighbourhood. This short interaction range limits the coupling between different species and reduces their ability to perform metabolic processes collectively. Our experiments and models demonstrate that the spatial scale of biotic interaction plays a fundamental role in shaping the ecological dynamics of communities and the functioning of ecosystems.

135 citations


Journal ArticleDOI
TL;DR: This study presents the development and validation of a comprehensive quantitative target methodology for the analysis of 2316 emerging pollutants in water based on Ultra-Performance Liquid Chromatography Quadrupole-Time-Of-Flight Mass Spectrometry (UPLC-Q-ToF-HRMS/MS).

129 citations


Journal ArticleDOI
TL;DR: In this article, the authors assess spatial and temporal trends of population-normalized mass loads of benzoylecgonine, amphetamine, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) in raw wastewater over 7 years (2011-17), and address overall drug use by estimating the average number of combined doses consumed per day in each city.
Abstract: Background and aims Wastewater‐based epidemiology is an additional indicator of drug use that is gaining reliability to complement the current established panel of indicators. The aims of this study were to: (i) assess spatial and temporal trends of population‐normalized mass loads of benzoylecgonine, amphetamine, methamphetamine and 3,4-methylenedioxymethamphetamine (MDMA) in raw wastewater over 7 years (2011–17); (ii) address overall drug use by estimating the average number of combined doses consumed per day in each city; and (iii) compare these with existing prevalence and seizure data. Design Analysis of daily raw wastewater composite samples collected over 1 week per year from 2011 to 2017. Setting and Participants Catchment areas of 143 wastewater treatment plants in 120 cities in 37 countries. Measurements Parent substances (amphetamine, methamphetamine and MDMA) and the metabolites of cocaine (benzoylecgonine) and of Δ9‐tetrahydrocannabinol (11‐nor‐9‐carboxy‐Δ9‐tetrahydrocannabinol) were measured in wastewater using liquid chromatography–tandem mass spectrometry. Daily mass loads (mg/day) were normalized to catchment population (mg/1000 people/day) and converted to the number of combined doses consumed per day. Spatial differences were assessed world‐wide, and temporal trends were discerned at European level by comparing 2011–13 drug loads versus 2014–17 loads. Findings Benzoylecgonine was the stimulant metabolite detected at higher loads in southern and western Europe, and amphetamine, MDMA and methamphetamine in East and North–Central Europe. In other continents, methamphetamine showed the highest levels in the United States and Australia and benzoylecgonine in South America. During the reporting period, benzoylecgonine loads increased in general across Europe, amphetamine and methamphetamine levels fluctuated and MDMA underwent an intermittent upsurge. Conclusions The analysis of wastewater to quantify drug loads provides near real‐time drug use estimates that globally correspond to prevalence and seizure data.

Journal ArticleDOI
TL;DR: The results provide strong support to the general negative impact of urbanization on abundance and species richness within habitat patches and highlight the importance of considering multiple spatial scales and taxa to assess the impacts of urbanized biodiversity.
Abstract: The increasing urbanization process is hypothesized to drastically alter (semi-)natural environments with a concomitant major decline in species abundance and diversity. Yet, studies on this effect of urbanization, and the spatial scale at which it acts, are at present inconclusive due to the large heterogeneity in taxonomic groups and spatial scales at which this relationship has been investigated among studies. Comprehensive studies analysing this relationship across multiple animal groups and at multiple spatial scales are rare, hampering the assessment of how biodiversity generally responds to urbanization. We studied aquatic (cladocerans), limno-terrestrial (bdelloid rotifers) and terrestrial (butterflies, ground beetles, ground- and web spiders, macro-moths, orthopterans and snails) invertebrate groups using a hierarchical spatial design, wherein three local-scale (200 m × 200 m) urbanization levels were repeatedly sampled across three landscape-scale (3 km × 3 km) urbanization levels. We tested for local and landscape urbanization effects on abundance and species richness of each group, whereby total richness was partitioned into the average richness of local communities and the richness due to variation among local communities. Abundances of the terrestrial active dispersers declined in response to local urbanization, with reductions up to 85% for butterflies, while passive dispersers did not show any clear trend. Species richness also declined with increasing levels of urbanization, but responses were highly heterogeneous among the different groups with respect to the richness component and the spatial scale at which urbanization impacts richness. Depending on the group, species richness declined due to biotic homogenization and/or local species loss. This resulted in an overall decrease in total richness across groups in urban areas. These results provide strong support to the general negative impact of urbanization on abundance and species richness within habitat patches and highlight the importance of considering multiple spatial scales and taxa to assess the impacts of urbanization on biodiversity.

Journal ArticleDOI
01 Sep 2020
TL;DR: In this paper, the authors highlight the need for policies to encompass all actors in the food value chain and suggest ten key steps to achieve a reduction in pesticide risks, and discuss major trade-offs and areas of tension with other agricultural policy goals.
Abstract: Numerous pesticide policies have been introduced to mitigate the risks of pesticide use, but most have not been successful in reaching usage reduction goals. Here, we name key challenges for the reduction of environmental and health risks from agricultural pesticide use and develop a framework for improving current policies. We demonstrate the need for policies to encompass all actors in the food value chain. By adopting a multi-disciplinary approach, we suggest ten key steps to achieve a reduction in pesticide risks. We highlight how new technologies and regulatory frameworks can be implemented and aligned with all actors in food value chains. Finally, we discuss major trade-offs and areas of tension with other agricultural policy goals and propose a holistic approach to advancing pesticide policies. Numerous pesticide reduction policies have been introduced in Europe. Shortcomings in current policies are discussed in this Perspective, and ten steps for guiding regulatory bodies towards implementing effective pesticide policies are presented.

Journal ArticleDOI
26 Aug 2020-Nature
TL;DR: By reconstructing a large phylogeny of all currently described cichlid species, it is shown that explosive speciation is solely concentrated in species flocks of several large young lakes and suggested that the combination of ecological opportunity, sexual selection and exceptional genomic potential is the key to understanding explosive adaptive radiation.
Abstract: Speciation rates vary considerably among lineages, and our understanding of what drives the rapid succession of speciation events within young adaptive radiations remains incomplete1–11. The cichlid fish family provides a notable example of such variation, with many slowly speciating lineages as well as several exceptionally large and rapid radiations12. Here, by reconstructing a large phylogeny of all currently described cichlid species, we show that explosive speciation is solely concentrated in species flocks of several large young lakes. Increases in the speciation rate are associated with the absence of top predators; however, this does not sufficiently explain explosive speciation. Across lake radiations, we observe a positive relationship between the speciation rate and enrichment of large insertion or deletion polymorphisms. Assembly of 100 cichlid genomes within the most rapidly speciating cichlid radiation, which is found in Lake Victoria, reveals exceptional ‘genomic potential’—hundreds of ancient haplotypes bear insertion or deletion polymorphisms, many of which are associated with specific ecologies and shared with ecologically similar species from other older radiations elsewhere in Africa. Network analysis reveals fundamentally non-treelike evolution through recombining old haplotypes, and the origins of ecological guilds are concentrated early in the radiation. Our results suggest that the combination of ecological opportunity, sexual selection and exceptional genomic potential is the key to understanding explosive adaptive radiation. Analyses of the genomes of cichlid species reveal that the combination of ecological opportunity, sexual selection and exceptional genomic potential is the key to understanding explosive adaptive radiation in cichlids.

Journal ArticleDOI
TL;DR: B baseline knowledge and guidance is provided on how BSFL treatment facilities may systematically operate using biowastes of varying types and compositions and variability in performance was higher than expected for the formulations.

Journal ArticleDOI
TL;DR: A comprehensive synthesis is provided that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments and suggests future research directions across a gradient of lake types and environmental conditions.
Abstract: In many regions across the globe, extreme weather events such as storms have increased in frequency, intensity, and duration due to climate change. Ecological theory predicts that such extreme events should have large impacts on ecosystem structure and function. High winds and precipitation associated with storms can affect lakes via short-term runoff events from watersheds and physical mixing of the water column. In addition, lakes connected to rivers and streams will also experience flushing due to high flow rates. Although we have a well-developed understanding of how wind and precipitation events can alter lake physical processes and some aspects of biogeochemical cycling, our mechanistic understanding of the emergent responses of phytoplankton communities is poor. Here we provide a comprehensive synthesis that identifies how storms interact with lake and watershed attributes and their antecedent conditions to generate changes in lake physical and chemical environments. Such changes can restructure phytoplankton communities and their dynamics, as well as result in altered ecological function (e.g., carbon, nutrient and energy cycling) in the short- and long-term. We summarize the current understanding of storm-induced phytoplankton dynamics, identify knowledge gaps with a systematic review of the literature, and suggest future research directions across a gradient of lake types and environmental conditions.

Journal ArticleDOI
TL;DR: A broad view of what constitutes an adaptive radiation is taken, and commonalities are sought among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations.
Abstract: Adaptive radiation plays a fundamental role in our understanding of the evolutionary process. However, the concept has provoked strong and differing opinions concerning its definition and nature among researchers studying a wide diversity of systems. Here, we take a broad view of what constitutes an adaptive radiation, and seek to find commonalities among disparate examples, ranging from plants to invertebrate and vertebrate animals, and remote islands to lakes and continents, to better understand processes shared across adaptive radiations. We surveyed many groups to evaluate factors considered important in a large variety of species radiations. In each of these studies, ecological opportunity of some form is identified as a prerequisite for adaptive radiation. However, evolvability, which can be enhanced by hybridization between distantly related species, may play a role in seeding entire radiations. Within radiations, the processes that lead to speciation depend largely on (1) whether the primary drivers of ecological shifts are (a) external to the membership of the radiation itself (mostly divergent or disruptive ecological selection) or (b) due to competition within the radiation membership (interactions among members) subsequent to reproductive isolation in similar environments, and (2) the extent and timing of admixture. These differences translate into different patterns of species accumulation and subsequent patterns of diversity across an adaptive radiation. Adaptive radiations occur in an extraordinary diversity of different ways, and continue to provide rich data for a better understanding of the diversification of life.

Journal ArticleDOI
TL;DR: The Second Warning to Humanity as mentioned in this paper provides a framework to assess the dangers now threatening the world's large lake ecosystems and to evaluate pathways of sustainable development that are more respectful of their ongoing provision of services.

Journal ArticleDOI
TL;DR: It is advocated that the term “eDNA” should be used in its generic sense, as originally defined, encompassing the DNA of all organisms present in environmental samples, including microbial, meiofaunal and macrobial taxa.
Abstract: The last decade brought a spectacular development of so-called environmental (e)DNA studies. In general, "environmental DNA" is defined as DNA isolated from environmental samples, in contrast to genomic DNA that is extracted directly from specimens. However, the variety of different sources of eDNA and the range of taxonomic groups that are targeted by eDNA studies is large, which has led to some discussion about the breadth of the eDNA concept. In particular, there is a recent trend to restrict the use of the term "eDNA" to the DNA of macro-organisms, which are not physically present in environmental samples. In this paper, we argue that such a distinction may not be ideal, because the eDNA signal can come from organisms across the whole tree of life. Consequently, we advocate that the term "eDNA" should be used in its generic sense, as originally defined, encompassing the DNA of all organisms present in environmental samples, including microbial, meiofaunal and macrobial taxa. We first suggest specifying the environmental origin of the DNA sample, such as water eDNA, sediment eDNA or soil eDNA. A second specification would then define the taxonomic group targeted through polymerase chain reaction amplification, such as fish eDNA, invertebrate eDNA and bacterial eDNA. This terminology does also not require assumptions about the specific state of the DNA sampled (intracellular or extracellular). We hope that such terminology will help better define the scope of eDNA studies, especially for environmental managers, who use them as reference in routine biomonitoring and bioassessment.

Journal ArticleDOI
TL;DR: The synthesis of nanoplastic particles and microplastic fibers were synthesized with a passive inorganic tracer to aid in faster and more quantitative analysis using ICP-MS, contributing to the understanding of the fate of particulate plastics and to assesing the associated environmental risks of particle mobility and percolation.
Abstract: Wastewater treatment plants have been identified as important hubs for small particulate plastic, down to the nanometer scale, from urban areas to the environment. The reuse of sludge as fertilizer in agricultural practices can lead to accumulation of plastic in the soil. In this study, nanoplastic particles and microplastic fibers were synthesized with a passive inorganic tracer to aid in faster and more quantitative analysis using inductively coupled plasma mass spectrometry (ICP-MS). Using the anaerobic digestate of a pilot wastewater treatment plant spiked with metal-doped plastic, the excess sludge was dewatered, ensuring realistic associations between sludge and plastic. The resulting sludge cake was affixed atop an unsaturated porous-medium column of glass beads to assess: (i) the release of particulate plastic from the sludge, and (ii) the accumulation and mobility of plastic and organic matter through the column (analogous to a soil). A total of three particulate plastic treatments were assessed, in triplicate, where the plastic and mobile organic fractions were monitored for 14 pore water volumes. Due to size-limited transport, low deattachment from the sludge and reduced mobility through the column were found for microplastic fibers (>95% retention). However, cotransport between the mobile organic fraction and nanoplastic particles was observed, with 50% of both retained in the column. These results contribute to the understanding of the fate of particulate plastics and to assessing the associated environmental risks of particle mobility and percolation, particularly for nanoplastics.

Journal ArticleDOI
TL;DR: The aim of this work was to use a panel of 12 different textiles of representative fibers and textile types to investigate the source(s) of the MPF during washing, and found the large contribution of the edges to the total release offers options for technical solutions which have the possibility to control MPF formation throughout the textile manufacturing chain by using cutting methods which minimizeMPF formation.
Abstract: Microplastic fibers (MPFs) have been found to be a major form of microplastics in freshwaters, and washing of synthetic textiles has been identified as one of their main sources. The aim of this work was to use a panel of 12 different textiles of representative fibers and textile types to investigate the source(s) of the MPF during washing. Using standardized washing tests, textile swatches tailored using five different cutting/sewing methods were washed up to 10 times. The MPF quantity and fiber length were determined using image analysis. The 12 textiles demonstrated great variability in MPF release, ranging from 210 to 72,000 MPF/g textile per wash. The median MPF length ranged from 165 to 841 μm. The number of released MPF was influenced by the cutting method, where scissor-cut samples released 3-21 times higher numbers of MPF than the laser-cut samples. The textiles with mechanically processed surfaces (i.e., fleece) released significantly more (p-value < 0.001) than the textiles with unprocessed surfaces. For all textiles, the MPF release decreased with repeated wash cycles, and a small continuous fiber release was observed after 5-6 washings, accompanied by a slight increase in the fiber length. The decrease in the number of MPF released is likely caused by depletion of the production-inherited MPFs trapped within the threads or the textile structure. The comparison of MPF release from laser-cut samples, which had sealed edges, and the other cutting methods allowed us to separate the contributions of the edge- and surface-sourced fibers from the textiles to the total release. On an average, 84% (range 49-95%) of the MPF release originated from the edges, highlighting the importance of the edge-to-surface ratio when comparing different release studies. The large contribution of the edges to the total release offers options for technical solutions which have the possibility to control MPF formation throughout the textile manufacturing chain by using cutting methods which minimize MPF formation.

Journal ArticleDOI
TL;DR: Fe and S precursors can be used to select the conditions of synthesis process and provide selected physicochemical properties (e.g. S speciation, hydrophobicity, and crystalline structure), reactivity, and selectivity of SNZVI materials.
Abstract: The reactivity of sulfidized nanoscale zerovalent iron (SNZVI) is affected by the amount and species of sulfur in the materials. Here, we assess the impact of the Fe (Fe2+ and Fe3+) and S (S2O42-, S2-, and S62-) precursors used to synthesize both NZVI and SNZVI on the resulting physicochemical properties and reactivity and selectivity with water and trichloroethene (TCE). X-ray diffraction indicated that the Fe precursors altered the crystalline structure of both NZVI and SNZVI. The materials made from the Fe3+ precursor had an expanded lattice in the Fe0 body-centered-cubic (BCC) structure and lower electron-transfer resistance, providing higher reactivity with water (∼2-3 fold) and TCE (∼5-13 fold) than those made from an Fe2+ precursor. The choice of the S precursor controlled the S speciation in the SNZVI particles, as indicated by X-ray absorption spectroscopy. Iron disulfide (FeS2) was the main S species of SNZVI made from S2O42-, whereas iron sulfide (FeS) was the main S species of SNZVI made from S2-/S62-. The former SNZVI was more hydrophobic, reactive with, and selective for TCE compared to the latter SNZVI. These results suggest that the Fe and S precursors can be used to select the conditions of the synthesis process and provide selected physicochemical properties (e.g., S speciation, hydrophobicity, and crystalline structure), reactivity, and selectivity of the SNZVI materials.

Journal ArticleDOI
TL;DR: A universal green synthesis method for the in situ growth of MOF nanocrystals within wood substrates is introduced, which offers a stable, sustainable, and scalable platform for the fabrication of multifunctional MOF/wood‐derived composites with potential applications in environmental‐ and energy‐related fields.
Abstract: The applicability of advanced composite materials with hierarchical structure that conjugate metal-organic frameworks (MOFs) with macroporous materials is commonly limited by their inferior mechanical properties. Here, a universal green synthesis method for the in situ growth of MOF nanocrystals within wood substrates is introduced. Nucleation sites for different types of MOFs are readily created by a sodium hydroxide treatment, which is demonstrated to be broadly applicable to different wood species. The resulting MOF/wood composite exhibits hierarchical porosity with 130 times larger specific surface area compared to native wood. Assessment of the CO2 adsorption capacity demonstrates the efficient utilization of the MOF loading along with similar adsorption ability to that of pure MOF. Compression and tensile tests reveal superior mechanical properties, which surpass those obtained for polymer substrates. The functionalization strategy offers a stable, sustainable, and scalable platform for the fabrication of multifunctional MOF/wood-derived composites with potential applications in environmental- and energy-related fields.

Journal ArticleDOI
TL;DR: A new integrated modelling framework is developed that implements a semi-continuous simulation approach to investigate flood prevention and water supply benefits of RWH tanks and showed that extensive implementation of R WH tanks in the study area is economically feasible and can reduce expected annual damage in the catchment by up to approximately 30 percent.

Journal ArticleDOI
TL;DR: It is proposed that water and waste infrastructure improvements tailored to these settings should be evaluated for their effectiveness in limiting environmental AMR dissemination, lowering the community-level burden of antimicrobial-resistant infections and preventing antibiotic misuse.
Abstract: Antimicrobial resistance (AMR) is a growing public health challenge that is expected to disproportionately burden lower- and middle-income countries (LMICs) in the coming decades. Although the contributions of human and veterinary antibiotic misuse to this crisis are well-recognized, environmental transmission (via water, soil or food contaminated with human and animal faeces) has been given less attention as a global driver of AMR, especially in urban informal settlements in LMICs-commonly known as 'shanty towns' or 'slums'. These settlements may be unique hotspots for environmental AMR transmission given: (1) the high density of humans, livestock and vermin living in close proximity; (2) frequent antibiotic misuse; and (3) insufficient drinking water, drainage and sanitation infrastructure. Here, we highlight the need for strategies to disrupt environmental AMR transmission in urban informal settlements. We propose that water and waste infrastructure improvements tailored to these settings should be evaluated for their effectiveness in limiting environmental AMR dissemination, lowering the community-level burden of antimicrobial-resistant infections and preventing antibiotic misuse. We also suggest that additional research is directed towards developing economic and legal incentives for evaluating and implementing water and waste infrastructure in these settings. Given that almost 90% of urban population growth will occur in regions predicted to be most burdened by the AMR crisis, there is an urgent need to build effective, evidence-based policies that could influence massive investments in the built urban environment in LMICs over the next few decades.

Journal ArticleDOI
TL;DR: A new global recharge dataset encompassing >5000 locations is presented and it is shown that vegetation and soil structure have an explanatory power for recharge.

Journal ArticleDOI
TL;DR: In this paper, the authors study an As-contaminated aquifer in Van Phuc, Vietnam, located ~10 km southeast of Hanoi on the banks of the Red River, which is affected by large-scale groundwater abstraction.
Abstract: Geogenic groundwater arsenic (As) contamination is pervasive in many aquifers in south and southeast Asia. It is feared that recent increases in groundwater abstractions could induce the migration of high-As groundwaters into previously As-safe aquifers. Here we study an As-contaminated aquifer in Van Phuc, Vietnam, located ~10 km southeast of Hanoi on the banks of the Red River, which is affected by large-scale groundwater abstraction. We used numerical model simulations to integrate the groundwater flow and biogeochemical reaction processes at the aquifer scale, constrained by detailed hydraulic, environmental tracer, hydrochemical and mineralogical data. Our simulations provide a mechanistic reconstruction of the anthropogenically induced spatiotemporal variations in groundwater flow and biogeochemical dynamics and determine the evolution of the migration rate and mass balance of As over several decades. We found that the riverbed–aquifer interface constitutes a biogeochemical reaction hotspot that acts as the main source of elevated As concentrations. We show that a sustained As release relies on regular replenishment of river muds rich in labile organic matter and reactive iron oxides and that pumping-induced groundwater flow may facilitate As migration over distances of several kilometres into adjacent aquifers. The interface between riverbed and aquifer is a biogeochemical reaction hotspot for arsenic release from river sediments, according to numerical simulations of groundwater flow and biogeochemical reaction processes.

Journal ArticleDOI
TL;DR: Diclofenac was used as a model compound to study the impact of biotransformation on the bioaccumulation potential and toxicity in two keystone aquatic invertebrates and revealed possible catalysis by an S-adenosylmethionine-dependent -carboxylic acid methyltransferase.
Abstract: Biotransformation plays a crucial role in regulating the bioaccumulation potential and toxicity of organic compounds in organisms but is, in general, poorly understood for emerging contaminants. Here, we have used diclofenac as a model compound to study the impact of biotransformation on the bioaccumulation potential and toxicity in two keystone aquatic invertebrates: Gammarus pulex and Hyalella azteca. In both species, diclofenac was transformed into several oxidation products and conjugates, including two novel products, that is, diclofenac taurine conjugate (DCF-M403) and unexpected diclofenac methyl ester (DCF-M310.03). The ratios of biotransformation products to parent compound were 12-17 for DCF-M403 and 0.01-0.7 for DCF-M310.03 after 24 h exposure. Bioconcentration factors (BCFs) of diclofenac were 0.5 and 3.2 L kgww-1 in H. azteca and G. pulex, respectively, whereas BCFs of DCF-M310.03 was 164.5 and 104.7 L kgww-1, respectively, representing a 25- to 110-fold increase. Acute toxicity of DCF-M310.03 was also higher than the parent compound in both species, which correlated well with the increased bioconcentration potential. The LC50 of diclofenac in H. azteca was 216 mg L-1, while that of metabolite DCF-M310.03 was reduced to only 0.53 mg L-1, representing a 430-fold increase in acute toxicity compared to diclofenac. DCF-M403 is less toxic than its parent compound toward H. azteca, which may be linked to its slightly lower hydrophobicity. Furthermore, the transformation of diclofenac to its methyl ester derivative was explored in crude invertebrate extracts spiked with an S-adenosylmethionine cofactor, revealing possible catalysis by an S-adenosylmethionine-dependent carboxylic acid methyltransferase. Methylation of diclofenac was further detected in fish hepatocytes and human urine, indicating a broader relevance. Therefore, potentially methylated metabolites of polar contaminants should be considered for a comprehensive risk assessment in the future.

Journal ArticleDOI
TL;DR: In this article, the authors take stock with the geography of sustainability transitions (GOST) as it is presented in the transitions research agenda, which is geared to two empirical themes, namely urban transitions and transitions in developing countries, and highlight the increasing engagement of geographers with transitions studies and the theoretical approaches they have brought to bear on the field.
Abstract: This viewpoint takes stock with the ‘geography of sustainability transitions’ (GOST) as it is presented in the transitions research agenda. GOST has been a relatively recent addition to transition theorizing, addressing the need for greater sensitivity and attention to the scales, spatialities, and context-specific factors that shape transitions. In our view, the agenda represents a rather narrow perspective on GOST, which is geared to two empirical themes, namely urban transitions and transitions in developing countries. While these are relevant and topical issues, the section lacks sufficient acknowledgement of the increasing engagement of geographers with transitions studies and the theoretical approaches they have brought to bear on the field. This short commentary thus aims at complementing the agenda paper by outlining a theoretical research agenda that is emerging in this field, framed around the conceptualization of scales, places and spaces in which transitions unfold.

Journal ArticleDOI
TL;DR: This analysis focused on three key elements of the resulting network of SDG interactions, which identified the most dominant SDGs in the network and identified critical sub‐networks of strongly interconnected SDG targets.
Abstract: Developed to be interconnected by design, the 17 sustainable development goals (SDGs) and their 169 targets have attracted a growing scientific community committed to exploring the systemic interactions inherent to the 2030 Agenda. Understanding which SDGs influence one another (positively or negatively) is critical to prioritize and implement policies that maximize synergies between goals while navigating trade‐offs. In this way, the need for informed decision‐making urgently requires knowledge of context‐specific SDG interactions. Drawing on an extensive literature review (including scientific reports and scholarly articles), we collected, synthesized, and analyzed data about negative and positive interactions among SDG goals and targets. Based on this unique dataset, our analysis focused on three key elements of the resulting network of SDG interactions: First, we identified the most dominant SDGs in the network. Second, we identified systemic multipliers, defined as nodes with higher weighted amounts of outgoing than incoming influence. Third, we identified critical sub‐networks of strongly interconnected SDG targets, highlighting possible virtuous cycles that could serve as concrete entry points to realize the 2030 Agenda. Building on our results, a collaborative effort to add and refine data on behalf of an open‐knowledge platform could provide a solid basis for further analysis and enhanced usability in concrete contexts.