scispace - formally typeset
Search or ask a question
Institution

Syngenta

CompanyBasel, Switzerland
About: Syngenta is a company organization based out in Basel, Switzerland. It is known for research contribution in the topics: Population & Germplasm. The organization has 4724 authors who have published 6036 publications receiving 164311 citations. The organization is also known as: Syngenta & Syngenta AG.


Papers
More filters
Journal ArticleDOI
12 Feb 2010-Science
TL;DR: A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.
Abstract: Continuing population and consumption growth will mean that the global demand for food will increase for at least another 40 years. Growing competition for land, water, and energy, in addition to the overexploitation of fisheries, will affect our ability to produce food, as will the urgent requirement to reduce the impact of the food system on the environment. The effects of climate change are a further threat. But the world can produce more food and can ensure that it is used more efficiently and equitably. A multifaceted and linked global strategy is needed to ensure sustainable and equitable food security, different components of which are explored here.

9,125 citations

Journal ArticleDOI
05 Apr 2002-Science
TL;DR: A draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp.indica, by whole-genome shotgun sequencing is produced, with a large proportion of rice genes with no recognizable homologs due to a gradient in the GC content of rice coding sequences.
Abstract: We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC-content of rice coding sequences.

4,064 citations

Journal ArticleDOI
Shusei Sato, Satoshi Tabata, Hideki Hirakawa, Erika Asamizu  +320 moreInstitutions (51)
31 May 2012-Nature
TL;DR: A high-quality genome sequence of domesticated tomato is presented, a draft sequence of its closest wild relative, Solanum pimpinellifolium, is compared, and the two tomato genomes are compared to each other and to the potato genome.
Abstract: Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera1 and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium2, and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness.

2,687 citations

Journal ArticleDOI
TL;DR: Together results from all three stresses identified 2,409 genes with a greater than 2-fold change over control, suggesting that about 30% of the transcriptome is sensitive to regulation by common stress conditions, and supporting the hypothesis that an important function of the circadian clock is to “anticipate” predictable stresses such as cold nights.
Abstract: To identify genes of potential importance to cold, salt, and drought tolerance, global expression profiling was performed on Arabidopsis plants subjected to stress treatments of 4 degrees C, 100 mM NaCl, or 200 mM mannitol, respectively RNA samples were collected separately from leaves and roots after 3- and 27-h stress treatments Profiling was conducted with a GeneChip microarray with probe sets for approximately 8,100 genes Combined results from all three stresses identified 2,409 genes with a greater than 2-fold change over control This suggests that about 30% of the transcriptome is sensitive to regulation by common stress conditions The majority of changes were stimulus specific At the 3-h time point, less than 5% (118 genes) of the changes were observed as shared by all three stress responses By 27 h, the number of shared responses was reduced more than 10-fold (< 05%), consistent with a progression toward more stimulus-specific responses Roots and leaves displayed very different changes For example, less than 14% of the cold-specific changes were shared between root and leaves at both 3 and 27 h The gene with the largest induction under all three stress treatments was At5g52310 (LTI/COR78), with induction levels in roots greater than 250-fold for cold, 40-fold for mannitol, and 57-fold for NaCl A stress response was observed for 306 (68%) of the known circadian controlled genes, supporting the hypothesis that an important function of the circadian clock is to "anticipate" predictable stresses such as cold nights Although these results identify hundreds of potentially important transcriptome changes, the biochemical functions of many stress-regulated genes remain unknown

1,488 citations

Journal ArticleDOI
TL;DR: This review describes in detail the properties of the strobilurin active ingredients--their synthesis, biochemical mode of action, biokinetics, fungicidal activity, yield and quality benefits, resistance risk and human and environmental safety.
Abstract: Strobilurins are one of the most important classes of agricultural fungicide. Their invention was inspired by a group of fungicidally active natural products. The outstanding benefits they deliver are currently being utilised in a wide range of crops throughout the world. First launched in 1996, the strobilurins now include the world's biggest selling fungicide, azoxystrobin. By 2002 there will be six strobilurin active ingredients commercially available for agricultural use. This review describes in detail the properties of these active ingredients--their synthesis, biochemical mode of action, biokinetics, fungicidal activity, yield and quality benefits, resistance risk and human and environmental safety. It also describes the clear technical differences that exist between these active ingredients, particularly in the areas of fungicidal activity and biokinetics.

1,376 citations


Authors

Showing all 4737 results

NameH-indexPapersCitations
John R. Yates1771036129029
Thomas Boller10131042294
Tamio Hayashi9879935281
Ian Kimber9162028629
Roberto Bassi8932021655
Michael P. Washburn8129632468
Robert Gurny8139628391
Ian Jones8035337673
Xinnian Dong6610827849
Willem F. Broekaert6615519690
Rebecca J. Dearman6628713197
Steven J. Rothstein6616413804
Tong Zhu6412417310
John Ryals6311523451
Nicholas A. Buckley6241914283
Network Information
Related Institutions (5)
Novartis
50.5K papers, 1.9M citations

85% related

United States Environmental Protection Agency
26.9K papers, 1.1M citations

85% related

Merck & Co.
48K papers, 1.9M citations

85% related

Pfizer
37.4K papers, 1.6M citations

85% related

GlaxoSmithKline
21.1K papers, 1.1M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202218
2021272
2020277
2019260
2018275
2017250