scispace - formally typeset
Search or ask a question
Institution

Tallinn University of Technology

EducationTallinn, Estonia
About: Tallinn University of Technology is a education organization based out in Tallinn, Estonia. It is known for research contribution in the topics: European union & Computer science. The organization has 3688 authors who have published 10313 publications receiving 145058 citations. The organization is also known as: Tallinn Technical University & Tallinna Tehnikaülikool.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents new step-up dc/dc converter topologies intended for distributed power generation systems and describes the operation principles of the proposed topologies and analyzes the theoretical and experimental results.
Abstract: This paper presents new step-up dc/dc converter topologies intended for distributed power generation systems. The topologies contain a voltage-fed quasi-Z-source inverter with continuous input current on the primary side, a single-phase isolation transformer, and a voltage doubler rectifier (VDR). To increase the power density of the converter, a three-phase auxiliary ac link (a three-phase inverter and a three-phase isolation transformer) and a three-phase VDR are proposed to be implemented. This paper describes the operation principles of the proposed topologies and analyzes the theoretical and experimental results.

388 citations

Journal ArticleDOI
TL;DR: RT-PCR results showed that the expression levels of many tapetum-preferential genes are reduced significantly in the dyt1 mutant, indicating that DYT1 is important for the expression of tapetal genes.
Abstract: In flowering plants, male fertility depends on proper cell differentiation in the anther. However, relatively little is known about the genes that regulate anther cell differentiation and function. Here, we report the analysis of a new Arabidopsis male sterile mutant, dysfunctional tapetum1 (dyt1). The dyt1 mutant exhibits abnormal anther morphology beginning at anther stage 4, with tapetal cells that have excess and/or enlarged vacuoles and lack the densely stained cytoplasm typical of normal tapetal cells. The mutant meiocytes are able to complete meiosis I, but they do not have a thick callose wall; they often fail to complete meiotic cytokinesis and eventually collapse. DYT1 encodes a putative bHLH transcription factor and is strongly expressed in the tapetum from late anther stage 5 to early stage 6, and at a lower level in meiocytes. In addition, the level of DYT1 mRNA is reduced in the sporocyteless/nozzle (spl/nzz) and excess microsporocytes1/extra sporogenous cell (ems1/exs) mutants; together with the mutant phenotypes, this suggests that DYT1 acts downstream of SPL/NZZ and EMS1/EXS. RT-PCR results showed that the expression levels of many tapetum-preferential genes are reduced significantly in the dyt1 mutant, indicating that DYT1 is important for the expression of tapetum genes. Our results support the hypothesis that DYT1 is a crucial component of a genetic network that controls anther development and function.

380 citations

Journal ArticleDOI
01 Jan 2001
TL;DR: In this article, an overview of theoretical basis, efficiency, economics, laboratory and pilot plant testing, design and modelling of different advanced oxidation processes (combinations of ozone and hydrogen peroxide with UV radiation and catalysts).
Abstract: The paper provides an overview of theoretical basis, efficiency, economics, laboratory and pilot plant testing, design and modelling of different advanced oxidation processes (combinations of ozone and hydrogen peroxide with UV radiation and catalysts).

346 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a small fraction of grown powders as absorber materials in monograin layer (MGL) solar cell structures: graphite/Cu 2 Zn 1-x Cd x Sn(Se 1-y S y ) 4 /CdS/ZnO.
Abstract: Cu 2 Zn 1-x Cd x Sn(Se 1-y S y ) 4 monograin powders with different x- and y-values were prepared from binary compounds in the liquid phase of flux material (KI) in evacuated quartz ampoules. All the materials had uniform composition and p-type conductivity. PL spectra (10 K) of the as grown Cu 2 Zn 1-x Cd x Sn(Se) 4 monograin powders showed one PL band with peak position around 0.85 eV which shifted linearly to the lower energy side with increasing Cd content. Cu 2 ZnSnS 4 material showed asymmetrical PL band at 1.31 eV attributed to band-to-tail recombination. RT Raman spectra of Cu 2 ZnSnSe 4 revealed two main peaks at 196 cm -1 and 173 cm -1 and a third less intensive peak with varying peak position in the region 231-253 cm -1 . Raman spectra of Cu 2 ZnSnS 4 showed an intensive peak at 338 cm -1 and additional peaks at 287 cm -1 and 368 cm -1 . Narrow sieved fractions of grown powders were used as absorber materials in monograin layer (MGL) solar cell structures: graphite/ Cu 2 Zn 1-x Cd x Sn(Se 1-y S y ) 4 /CdS/ZnO. The best so far solar cell that was based on the Cu 2 Zn 0.8 Cd 0.2 SnSe 4 had open circuit voltage 422 mV, short circuit current 12 mA/cm 2 and fill fac tor 44%.

337 citations

Journal ArticleDOI
TL;DR: It is shown that LRRTM1 is expressed during the development of specific forebrain structures, and thus could influence neuronal differentiation and connectivity, and the first putative genetic effect on variability in human brain asymmetry is found.
Abstract: Left–right asymmetrical brain function underlies much of human cognition, behavior and emotion. Abnormalities of cerebral asymmetry are associated with schizophrenia and other neuropsychiatric disorders. The molecular, developmental and evolutionary origins of human brain asymmetry are unknown. We found significant association of a haplotype upstream of the gene LRRTM1 (Leucine-rich repeat transmembrane neuronal 1) with a quantitative measure of human handedness in a set of dyslexic siblings, when the haplotype was inherited paternally (P = 0.00002). While we were unable to find this effect in an epidemiological set of twin-based sibships, we did find that the same haplotype is overtransmitted paternally to individuals with schizophrenia/schizoaffective disorder in a study of 1002 affected families (P = 0.0014). We then found direct confirmatory evidence that LRRTM1 is an imprinted gene in humans that shows a variable pattern of maternal downregulation. We also showed that LRRTM1 is expressed during the development of specific forebrain structures, and thus could influence neuronal differentiation and connectivity. This is the first potential genetic influence on human handedness to be identified, and the first putative genetic effect on variability in human brain asymmetry. LRRTM1 is a candidate gene for involvement in several common neurodevelopmental disorders, and may have played a role in human cognitive and behavioral evolution. Molecular Psychiatry (2007) 12, 1129–1139; doi:10.1038/sj.mp.4002053; published online 31 July 2007

332 citations


Authors

Showing all 3757 results

NameH-indexPapersCitations
James Chapman8248336468
Alexandre Alexakis6754017247
Bernard Waeber5637035335
Peter A. Andrekson5457312042
Charles S. Peirce5116711998
Lars M. Blank493018011
Fushuan Wen494659189
Mati Karelson4820710210
Ago Samoson461198807
Zebo Peng453597312
Petru Eles443006749
Vijai Kumar Gupta433016901
Eero Vasar432636930
Rik Ossenkoppele421926839
Tõnis Timmusk4110511056
Network Information
Related Institutions (5)
Norwegian University of Science and Technology
68.9K papers, 1.9M citations

88% related

Royal Institute of Technology
68.4K papers, 1.9M citations

86% related

Delft University of Technology
94.4K papers, 2.7M citations

86% related

Polytechnic University of Milan
58.4K papers, 1.2M citations

86% related

University of Ljubljana
47K papers, 1M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202342
2022107
2021883
2020951
2019882
2018745