scispace - formally typeset
Search or ask a question
Institution

Tata Institute of Fundamental Research

EducationMumbai, Maharashtra, India
About: Tata Institute of Fundamental Research is a education organization based out in Mumbai, Maharashtra, India. It is known for research contribution in the topics: Magnetization & Large Hadron Collider. The organization has 7786 authors who have published 21742 publications receiving 622368 citations. The organization is also known as: TIFR.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a systematic study of the factorization of long-range azimuthal twoparticle correlations into a product of single-particle anisotropies is presented as a function of pT and nu of both particles.
Abstract: A systematic study of the factorization of long-range azimuthal two-particle correlations into a product of single-particle anisotropies is presented as a function of pT and nu of both particles and as a function of the particle multiplicity in PbPb and pPb collisions. The data were taken with the CMS detector for PbPb collisions at root sNN = 2.76 TeV and pPb collisions at root sNN = 5.02 TeV, covering a very wide range of multiplicity. Factorization is observed to be broken as a function of both particle pT and nu. When measured with particles of different pT, the magnitude of the factorization breakdown for the second Fourier harmonic reaches 20% for very central PbPb collisions but decreases rapidly as the multiplicity decreases. The data are consistent with viscous hydrodynamic predictions, which suggest that the effect of factorization breaking is mainly sensitive to the initial-state conditions rather than to the transport properties (e.g., shear viscosity) of the medium. The factorization breakdown is also computed with particles of different nu. The effect is found to be weakest for mid-central PbPb events but becomes larger for more central or peripheral PbPb collisions, and also for very-high-multiplicity pPb collisions. The nu-dependent factorization data provide new insights to the longitudinal evolution of the medium formed in heavy ion collisions.

166 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the logic behind, and examine the reliability of, estimates of the critical end point (CEP) of QCD using the Taylor expansion method, and present the results of their experiments.
Abstract: In this talk I present the logic behind, and examine the reliability of, estimates of the critical end point (CEP) of QCD using the Taylor expansion method.

165 citations

Journal ArticleDOI
M. Iwasaki1, Kimitaka Itoh1, Hiroaki Aihara1, Kazuo Abe  +176 moreInstitutions (44)
TL;DR: In this article, the authors presented a method to solve the PDE problem in PhysRevD using the Web of Science Record created on 2010-11-05, modified on 2017-05-12.
Abstract: Reference EPFL-ARTICLE-154446doi:10.1103/PhysRevD.72.092005View record in Web of Science Record created on 2010-11-05, modified on 2017-05-12

165 citations

Journal ArticleDOI
TL;DR: In this paper, the authors analyze all the scenarios where the new physics contributes to a pair of these operators at a time, and find that the scenarios with new physics contributions to the pair remain the most favored ones.
Abstract: The anomalies in the measurements of observables involving b → sμμ decays, namely RK, RK*, P 5 ′ , and B , may be addressed by adding lepton-universality-violating new physics contributions to the effective operators $$ {\mathcal{O}}_{\mathcal{9}},{\mathcal{O}}_{10},{\mathcal{O}}_9^{\prime },{\mathcal{O}}_{10}^{\prime } $$ . We analyze all the scenarios where the new physics contributes to a pair of these operators at a time. We perform a global fit to all relevant data in the b → s sector to estimate the corresponding new Wilson coefficients, $$ {\mathcal{O}}_9^{\mathrm{NP}},{\mathcal{O}}_{10}^{\mathrm{NP}},{\mathcal{O}}_9^{\prime },{\mathcal{O}}_{10}^{\prime } $$ . In the light of the new data on RK, and RK*, presented in Moriond 2019, we find that the scenarios with new physics contributions to the $$ \left({\mathcal{O}}_9^{\mathrm{NP}},{\mathcal{O}}_9^{\prime}\right) $$ or $$ \left({\mathcal{O}}_9^{\mathrm{NP}},{\mathcal{O}}_{10}^{\prime}\right) $$ pair remain the most favored ones. On the other hand, though the competing scenario $$ \left({\mathcal{O}}_9^{\mathrm{NP}},{\mathcal{O}}_{10}^{\mathrm{NP}}\right) $$ remains attractive, its advantage above the SM reduces significantly due to the tension that emerges between the RK and RK* measurements with the new data. The movement of the RK measurement towards unity would also result in the re-emergence of the one-parameter scenario C 9 NP = − C 9 ′ .

165 citations

Journal ArticleDOI
Massimo Antonelli, D. M. Asner1, D. Bauer2, Thomas Becher3, M. Beneke4, Adrian John Bevan5, Monika Blanke6, C. Bloise, Marcella Bona7, A. Bondar8, C. Bozzi, Joachim Brod9, Andrzej J. Buras10, N. Cabibbo11, Angelo Carbone, G. Cavoto, Vincenzo Cirigliano12, Marco Ciuchini, J. P. Coleman13, Daniel P Cronin-Hennessy14, Jeremy Dalseno, Christine Davies15, F. Di Lodovico5, J. C. Dingfelder, Zdenek Dolezal16, S. Donati17, W. Dungel18, G. Eigen19, Ulrik Egede2, R. Faccini11, T. Feldmann10, F. Ferroni11, Jonathan M. Flynn20, E. Franco, Masahiro Fujikawa21, Ivan-Kresimir Furic22, Paolo Gambino23, Einan Gardi24, Timothy Gershon25, Stefano Giagu11, Eugene Golowich26, T. Goto, C. Greub27, C. Grojean7, Diego Guadagnoli10, U. A. Haisch28, R. F. Harr29, André H. Hoang6, Tobias Hurth13, Gino Isidori, D. E. Jaffe30, Andreas Jüttner28, Sebastian Jäger10, Alexander Khodjamirian31, Patrick Koppenburg2, R. Kowalewski32, P. Krokovny, Andreas S. Kronfeld3, Jack Laiho33, G. Lanfranchi, T. E. Latham25, J. Libby34, Antonio Limosani35, D. Lopes Pegna36, Cai-Dian Lü, Vittorio Lubicz37, E. Lunghi3, V. Luth13, K. Maltman38, W. J. Marciano30, E. C. Martin39, Guido Martinelli11, F. Martinez-Vidal40, A. Masiero41, Vicent Mateu6, Federico Mescia42, G. B. Mohanty43, M. Moulson, Matthias Neubert28, Helmut Neufeld44, S. Nishida, N. Offen45, M. Palutan, P. Paradisi10, Z. Parsa30, E. Passemar27, Maulik R. Patel7, Ben D. Pecjak28, Alexey A. Petrov29, Antonio Pich40, Maurizio Pierini7, Brad Plaster46, A. Powell47, S. Prell48, J. Rademaker49, M. Rescigno, S. Ricciardi50, Patrick Robbe45, Eduardo Rodrigues15, Marcello Rotondo, R. Sacco5, C. J. Schilling51, O. Schneider52, E. E. Scholz3, Bruce Schumm53, C. Schwanda18, A. J. Schwartz54, Barbara Sciascia, J. Serrano45, J. Shigemitsu27, I. P.J. Shipsey55, A.L. Sibidanov8, Luca Silvestrini, F. Simonetto41, Silvano Simula, Caleb Smith9, Amarjit Soni30, Lars Sonnenschein, Viola Sordini56, M. Sozzi17, T. Spadaro, P. Spradlin47, A. Stocchi45, Nazario Tantalo, Cecilia Tarantino37, A. V. Telnov36, D. Tonelli3, I. S. Towner57, K. Trabelsi, Phillip Urquijo35, R. S. Van De Water30, R. Van Kooten58, Javier Virto11, Guido Volpi17, Rainer Wanke28, S. Westhoff9, G. Wilkinson47, Matthew Wingate59, Yuehong Xie24, Jure Zupan60 
Carleton University1, Imperial College London2, Fermilab3, RWTH Aachen University4, Queen Mary University of London5, Max Planck Society6, CERN7, Budker Institute of Nuclear Physics8, Karlsruhe Institute of Technology9, Technische Universität München10, Sapienza University of Rome11, Los Alamos National Laboratory12, Stanford University13, University of Minnesota14, University of Glasgow15, Charles University in Prague16, University of Pisa17, Austrian Academy of Sciences18, University of Bergen19, University of Southampton20, Nara Women's University21, University of Florida22, University of Turin23, University of Edinburgh24, University of Warwick25, University of Massachusetts Amherst26, University of Bern27, University of Mainz28, Wayne State University29, Brookhaven National Laboratory30, Folkwang University of the Arts31, University of Victoria32, Washington University in St. Louis33, Indian Institute of Technology Madras34, University of Melbourne35, Princeton University36, Roma Tre University37, York University38, University of California, Irvine39, University of Valencia40, University of Padua41, University of Barcelona42, Tata Institute of Fundamental Research43, University of Vienna44, University of Paris-Sud45, University of Kentucky46, University of Oxford47, Iowa State University48, University of Bristol49, Rutherford Appleton Laboratory50, University of Texas at Austin51, École Polytechnique Fédérale de Lausanne52, University of California, Santa Cruz53, University of Cincinnati54, Purdue University55, ETH Zurich56, Queen's University57, Indiana University58, University of Cambridge59, University of Ljubljana60
TL;DR: In this time frame, measurements and the theoretical interpretation of their results have advanced tremendously as mentioned in this paper and a much broader understanding of flavor particles has been achieved, apart from their masses and quantum numbers, there now exist detailed measurements of the characteristics of their interactions allowing stringent tests of Standard Model predictions.

165 citations


Authors

Showing all 7857 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Suvadeep Bose154960129071
Subir Sarkar1491542144614
Sw. Banerjee1461906124364
Dipanwita Dutta1431651103866
Ajit Kumar Mohanty141112493062
Tariq Aziz138164696586
Andrew Mehta1371444101810
Suchandra Dutta134126587709
Kajari Mazumdar134129594253
Bobby Samir Acharya1331121100545
Gobinda Majumder133152387732
Eric Conte132120684593
Prashant Shukla131134185287
Alessandro Montanari131138793071
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

90% related

University of Paris-Sud
52.7K papers, 2.1M citations

90% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

90% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

89% related

Weizmann Institute of Science
54.5K papers, 3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022128
2021939
20201,085
20191,100
20181,040