scispace - formally typeset
Search or ask a question
Institution

Tata Institute of Fundamental Research

EducationMumbai, Maharashtra, India
About: Tata Institute of Fundamental Research is a education organization based out in Mumbai, Maharashtra, India. It is known for research contribution in the topics: Magnetization & Large Hadron Collider. The organization has 7786 authors who have published 21742 publications receiving 622368 citations. The organization is also known as: TIFR.


Papers
More filters
Journal ArticleDOI
Vardan Khachatryan1, Albert M. Sirunyan1, Armen Tumasyan1, Wolfgang Adam2  +2119 moreInstitutions (141)
29 May 2015
TL;DR: In this paper, a search for particle dark matter (DM), extra dimensions, and unparticles using events containing a jet and an imbalance in transverse momentum was conducted at the LHC.
Abstract: Results are presented from a search for particle dark matter (DM), extra dimensions, and unparticles using events containing a jet and an imbalance in transverse momentum. The data were collected by the CMS detector in proton-proton collisions at the LHC and correspond to an integrated luminosity of 19.7 fb$^{-1}$ at a centre-of-mass energy of 8 TeV. The number of observed events is found to be consistent with the standard model prediction. Limits are placed on the DM-nucleon scattering cross section as a function of the DM particle mass for spin-dependent and spin-independent interactions. Limits are also placed on the scale parameter $M_\mathrm{D}$ in the ADD model of large extra dimensions, and on the unparticle model parameter $\Lambda_\mathrm{U}$. The constraints on ADD models and unparticles are the most stringent limits in this channel and those on the DM-nucleon scattering cross section are an improvement over previous collider results.

425 citations

Journal ArticleDOI
TL;DR: In this paper, the authors study three-dimensional conformal field theories described by U(N) Chern-Simons theory at level k coupled to massless fermions in the fundamental representation and compute the exact planar free energy of the theory at finite temperature on ℝ2 as a function of the ’t-Hooft coupling λ=N/k.
Abstract: We study three-dimensional conformal field theories described by U(N) Chern–Simons theory at level k coupled to massless fermions in the fundamental representation. By solving a Schwinger–Dyson equation in light-cone gauge, we compute the exact planar free energy of the theory at finite temperature on ℝ2 as a function of the ’t Hooft coupling λ=N/k. Employing a dimensional reduction regularization scheme, we find that the free energy vanishes at |λ|=1; the conformal theory does not exist for |λ|>1. We analyze the operator spectrum via the anomalous conservation relation for higher spin currents, and in particular show that the higher spin currents do not develop anomalous dimensions at leading order in 1/N. We present an integral equation whose solution in principle determines all correlators of these currents at leading order in 1/N and present explicit perturbative results for all three-point functions up to two loops. We also discuss a light-cone Hamiltonian formulation of this theory where a W ∞ algebra arises. The maximally supersymmetric version of our theory is ABJ model with one gauge group taken to be U(1), demonstrating that a pure higher spin gauge theory arises as a limit of string theory.

424 citations

Journal ArticleDOI
TL;DR: In this paper, measurements of two-and four-particle angular correlations for charged particles emitted in pPb collisions are presented over a wide range in pseudorapidity and full azimuth.

423 citations

Journal ArticleDOI
TL;DR: In this paper, the authors detect mixed modes (i.e., modes that behave both as g modes in the core and as p modes in an envelope) in the spectrum of the early red giant KIC 7341231, which was observed during one year with the Kepler spacecraft.
Abstract: Rotation is expected to have an important influence on the structure and the evolution of stars. However, the mechanisms of angular momentum transport in stars remain theoretically uncertain and very complex to take into account in stellar models. To achieve a better understanding of these processes, we desperately need observational constraints on the internal rotation of stars, which until very recently was restricted to the Sun. In this paper, we report the detection of mixed modes—i.e., modes that behave both as g modes in the core and as p modes in the envelope—in the spectrum of the early red giant KIC 7341231, which was observed during one year with the Kepler spacecraft. By performing an analysis of the oscillation spectrum of the star, we show that its non-radial modes are clearly split by stellar rotation and we are able to determine precisely the rotational splittings of 18 modes. We then find a stellar model that reproduces very well the observed atmospheric and seismic properties of the star. We use this model to perform inversions of the internal rotation profile of the star, which enables us to show that the core of the star is rotating at least five times faster than the envelope. This will shed new light on the processes of transport of angular momentum in stars. In particular, this result can be used to place constraints on the angular momentum coupling between the core and the envelope of early red giants, which could help us discriminate between the theories that have been proposed over the last few decades.

422 citations

Journal ArticleDOI
V. M. Abazov1, Brad Abbott2, M. Abolins3, Bobby Samir Acharya4  +601 moreInstitutions (73)
TL;DR: In this article, the authors reported the observation of the X(3872) in the J/psipi(+)pi(-) channel with decaying to mu(+)mu(-), in p (p) over bar collisions at roots=1.96 TeV.
Abstract: We report the observation of the X(3872) in the J/psipi(+)pi(-) channel, with J/psi decaying to mu(+)mu(-), in p (p) over bar collisions at roots=1.96 TeV. Using approximately 230 pb(-1) of data collected with the Run II D0 detector, we observe 522+/-100 X(3872) candidates. The mass difference between the X(3872) state and the J/psi is measured to be 774.9+/-3.1(stat)+/-3.0(syst) MeV/c(2). We have investigated the production and decay characteristics of the X(3872) and find them to be similar to those of the psi(2S) state.

418 citations


Authors

Showing all 7857 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Suvadeep Bose154960129071
Subir Sarkar1491542144614
Sw. Banerjee1461906124364
Dipanwita Dutta1431651103866
Ajit Kumar Mohanty141112493062
Tariq Aziz138164696586
Andrew Mehta1371444101810
Suchandra Dutta134126587709
Kajari Mazumdar134129594253
Bobby Samir Acharya1331121100545
Gobinda Majumder133152387732
Eric Conte132120684593
Prashant Shukla131134185287
Alessandro Montanari131138793071
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

90% related

University of Paris-Sud
52.7K papers, 2.1M citations

90% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

90% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

89% related

Weizmann Institute of Science
54.5K papers, 3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022128
2021939
20201,085
20191,100
20181,040