scispace - formally typeset
Search or ask a question
Institution

Tata Institute of Fundamental Research

EducationMumbai, Maharashtra, India
About: Tata Institute of Fundamental Research is a education organization based out in Mumbai, Maharashtra, India. It is known for research contribution in the topics: Magnetization & Large Hadron Collider. The organization has 7786 authors who have published 21742 publications receiving 622368 citations. The organization is also known as: TIFR.


Papers
More filters
Journal ArticleDOI
Juan Antonio Aguilar-Saavedra1, Ahmed Ali, Benjamin C. Allanach2, Richard L. Arnowitt3, Howard Baer4, Jonathan Bagger5, Csaba Balázs6, Vernon Barger7, Michael Barnett8, A. Bartl9, Marco Battaglia8, Philip Bechtle10, Geneviève Bélanger, Alexander Belyaev11, Edmond L. Berger6, G.A. Blair12, Edouard Boos13, Marcela Carena14, S.Y. Choi15, Frank F. Deppisch, A. De Roeck16, Klaus Desch17, Marco Aurelio Diaz18, Abdelhak Djouadi19, Bhaskar Dutta3, S. Dutta20, S. Dutta10, Helmut Eberl21, John Ellis16, Jens Erler22, H. Fraas23, Ayres Freitas24, T. Fritzsche25, Rohini M. Godbole26, G. Gounaris27, Jaume Guasch28, John F. Gunion29, Naoyuki Haba30, Howard E. Haber31, K. Hagiwara, Liyuan Han32, Tao Han7, Hong-Jian He33, Sven Heinemeyer16, S. Hesselbach34, Keisho Hidaka35, I. Hinchliffe8, Martin Hirsch36, K. Hohenwarter-Sodek9, Wolfgang Hollik25, W. S. Hou37, Tobias Hurth16, Tobias Hurth10, I. Jack38, Yi Jiang32, D.R.T. Jones38, J. Kalinowski39, T. Kamon3, Gordon L. Kane40, Sin Kyu Kang41, Thomas Kernreiter9, Wolfgang Kilian, Choong Sun Kim42, Stephen F. King43, O. Kittel44, Michael Klasen, J. L. Kneur45, K. Kovarik21, Michael Kramer46, Sabine Kraml16, Remi Lafaye47, Paul Langacker48, Heather E. Logan49, W. G. Ma32, W. Majerotto21, H. U. Martyn46, Konstantin Matchev50, David J. Miller51, Myriam Mondragón22, Gudrid Moortgat-Pick16, Stefano Moretti43, Takehiko Mori52, Gilbert Moultaka45, Steve Muanza53, M. M. Mühlleitner, Biswarup Mukhopadhyaya54, U. Nauenberg55, Mihoko M. Nojiri56, D. Nomura11, H. Nowak, N. Okada, Keith A. Olive57, W. Oller21, Michael E. Peskin10, Tilman Plehn25, Giacomo Polesello, Werner Porod36, Werner Porod24, Fernando Quevedo2, David L. Rainwater58, Jürgen Reuter, Peter J. Richardson59, Krzysztof Rolbiecki39, Probir Roy60, Reinhold Rückl23, Heidi Rzehak61, P. Schleper62, Kim Siyeon63, Peter Skands14, P. Slavich, Dominik Stöckinger59, Paraskevas Sphicas16, Michael Spira61, Tim M. P. Tait6, Daniel Tovey64, José W. F. Valle36, Carlos E. M. Wagner65, Carlos E. M. Wagner6, Ch. Weber21, Georg Weiglein59, Peter Wienemann17, Z.-Z. Xing, Y. Yamada66, Jin Min Yang, D. Zerwas19, P.M. Zerwas, Ren-You Zhang32, X. Zhang, S.-H. Zhu67 
University of Lisbon1, University of Cambridge2, Texas A&M University3, Florida State University4, Johns Hopkins University5, Argonne National Laboratory6, University of Wisconsin-Madison7, Lawrence Berkeley National Laboratory8, University of Vienna9, Stanford University10, Michigan State University11, Royal Holloway, University of London12, Moscow State University13, Fermilab14, Chonbuk National University15, CERN16, University of Freiburg17, Pontifical Catholic University of Chile18, University of Paris19, University of Delhi20, Austrian Academy of Sciences21, National Autonomous University of Mexico22, University of Würzburg23, University of Zurich24, Max Planck Society25, Indian Institute of Science26, Aristotle University of Thessaloniki27, University of Barcelona28, University of California, Davis29, University of Tokushima30, University of California, Santa Cruz31, University of Science and Technology of China32, Tsinghua University33, Uppsala University34, Tokyo Gakugei University35, Spanish National Research Council36, National Taiwan University37, University of Liverpool38, University of Warsaw39, University of Michigan40, Seoul National University41, Yonsei University42, University of Southampton43, University of Bonn44, University of Montpellier45, RWTH Aachen University46, Laboratoire d'Annecy-le-Vieux de physique des particules47, University of Pennsylvania48, Carleton University49, University of Florida50, University of Glasgow51, University of Tokyo52, University of Lyon53, Harish-Chandra Research Institute54, University of Colorado Boulder55, Kyoto University56, University of Minnesota57, University of Rochester58, Durham University59, Tata Institute of Fundamental Research60, Paul Scherrer Institute61, University of Hamburg62, Chung-Ang University63, University of Sheffield64, University of Chicago65, Tohoku University66, Peking University67
TL;DR: In this article, a supersymmetry Parameter Analysis SPA (SPA) scheme is proposed based on a consistent set of conventions and input parameters, which connect parameters in different schemes and relate the Lagrangian parameters to physical observables at LHC and high energy e+e-linear collider experiments.
Abstract: High-precision analyses of supersymmetry parameters aim at reconstructing the fundamental supersymmetric theory and its breaking mechanism. A well defined theoretical framework is needed when higher-order corrections are included. We propose such a scheme, Supersymmetry Parameter Analysis SPA, based on a consistent set of conventions and input parameters. A repository for computer programs is provided which connect parameters in different schemes and relate the Lagrangian parameters to physical observables at LHC and high energy e+e- linear collider experiments, i.e., masses, mixings, decay widths and production cross sections for supersymmetric particles. In addition, programs for calculating high-precision low energy observables, the density of cold dark matter (CDM) in the universe as well as the cross sections for CDM search experiments are included. The SPA scheme still requires extended efforts on both the theoretical and experimental side before data can be evaluated in the future at the level of the desired precision. We take here an initial step of testing the SPA scheme by applying the techniques involved to a specific supersymmetry reference point.

249 citations

Journal ArticleDOI
TL;DR: In this paper, a phenomenological form for the self-energy was introduced to extract important information from angle-resolved photoemission data on the high-T$ superconductor for binding energies of order the spectral gap.
Abstract: We introduce a simple phenomenological form for the self-energy which allows us to extract important information from angle-resolved photoemission data on the high-${T}_{c}$ superconductor ${\mathrm{Bi}}_{2}{\mathrm{Sr}}_{2}{\mathrm{CaCu}}_{2}{\mathrm{O}}_{8}$ for binding energies of order the spectral gap. First, we find a rapid suppression of the single particle scattering rate below ${T}_{c}$ for all doping levels. Second, we find that in the overdoped materials the gap $\ensuremath{\Delta}$ at all k points on the Fermi surface has significant temperature dependence and vanishes near ${T}_{c}.$ In contrast, in the underdoped samples such behavior is found only at k points close to the diagonal. Near $(\ensuremath{\pi},0)$, $\ensuremath{\Delta}$ is essentially $T$ independent in the underdoped samples. The filling-in of the pseudogap with increasing $T$ is described by a broadening proportional to $T\ensuremath{-}{T}_{c},$ which is naturally explained by pairing correlations above ${T}_{c}.$

248 citations

Journal ArticleDOI
TL;DR: A model-free method for constructing time-resolved area-normalized emission spectra (TRANES) using luminescence decays at all emission wavelengths is described in this article.
Abstract: A model-free method is described for constructing time-resolved area-normalized emission spectra (TRANES) using luminescence decays at all emission wavelengths. An isoemissive point in TRANES indicates that the observed emission from the sample is due to two species only, irrespective of the origin of the two species or the excited-state kinetics. Proof for the existence of an isoemissive point in TRANES is given for various cases involving two emissive species. The isoemissive point in TRANES is qualitatively similar to the isosbestic point in time-resolved absorption spectra (TRAS) in kinetic spectrophotometry involving two species.

248 citations

Journal ArticleDOI
TL;DR: The glucose-induced increase in glycolytic enzyme activity in Saccharomyces cerevisiae is completely prevented by cycloheximide, an inhibitor of protein synthesis in this yeast.

248 citations

Journal ArticleDOI
E. Kou, Phillip Urquijo1, Wolfgang Altmannshofer2, F. Beaujean3  +558 moreInstitutions (140)
TL;DR: The Belle II detector as mentioned in this paper is a state-of-the-art detector for heavy flavor physics, quarkonium and exotic states, searches for dark sectors, and many other areas.
Abstract: The Belle II detector will provide a major step forward in precision heavy flavor physics, quarkonium and exotic states, searches for dark sectors, and many other areas. The sensitivity to a large number of key observables can be improved by about an order of magnitude compared to the current measurements, and up to two orders in very clean search measurements. This increase in statistical precision arises not only due to the increased luminosity, but also from improved detector efficiency and precision for many channels. Many of the most interesting observables tend to have very small theoretical uncertainties that will therefore not limit the physics reach. This book has presented many new ideas for measurements, both to elucidate the nature of current anomalies seen in flavor, and to search for new phenomena in a plethora of observables that will become accessible with the Belle II dataset. The simulation used for the studiesinthis book was state ofthe artat the time, though weare learning a lot more about the experiment during the commissioning period. The detector is in operation, and working spectacularly well.

247 citations


Authors

Showing all 7857 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Suvadeep Bose154960129071
Subir Sarkar1491542144614
Sw. Banerjee1461906124364
Dipanwita Dutta1431651103866
Ajit Kumar Mohanty141112493062
Tariq Aziz138164696586
Andrew Mehta1371444101810
Suchandra Dutta134126587709
Kajari Mazumdar134129594253
Bobby Samir Acharya1331121100545
Gobinda Majumder133152387732
Eric Conte132120684593
Prashant Shukla131134185287
Alessandro Montanari131138793071
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

90% related

University of Paris-Sud
52.7K papers, 2.1M citations

90% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

90% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

89% related

Weizmann Institute of Science
54.5K papers, 3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022128
2021939
20201,085
20191,100
20181,040