scispace - formally typeset
Search or ask a question
Institution

Tata Institute of Fundamental Research

EducationMumbai, Maharashtra, India
About: Tata Institute of Fundamental Research is a education organization based out in Mumbai, Maharashtra, India. It is known for research contribution in the topics: Magnetization & Large Hadron Collider. The organization has 7786 authors who have published 21742 publications receiving 622368 citations. The organization is also known as: TIFR.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that thermal expansion of graphene is negative for all temperatures between 300 and 30 K, and with a lowering of temperature, the positively dispersing electromechanical modes evolve into negatively dispersing ones.
Abstract: We use suspended graphene electromechanical resonators to study the variation of resonant frequency as a function of temperature. Measuring the change in frequency resulting from a change in tension, from 300 to 30 K, allows us to extract information about the thermal expansion of monolayer graphene as a function of temperature, which is critical for strain engineering applications. We find that thermal expansion of graphene is negative for all temperatures between 300 and 30 K. We also study the dispersion, the variation of resonant frequency with DC gate voltage, of the electromechanical modes and find considerable tunability of resonant frequency, desirable for applications like mass sensing and RF signal processing at room temperature. With a lowering of temperature, we find that the positively dispersing electromechanical modes evolve into negatively dispersing ones. We quantitatively explain this crossover and discuss optimal electromechanical properties that are desirable for temperature-compensated sensors.

246 citations

Journal ArticleDOI
TL;DR: The Belle experiment at the KEKB e+e- asymmetric energy collider achieved its original objective of measuring precisely differences between particles and anti-particles in the B system as mentioned in this paper.
Abstract: The Belle experiment, running at the KEKB e+e- asymmetric energy collider during the first decade of the century, achieved its original objective of measuring precisely differences between particles and anti-particles in the B system. After collecting 1000 fb-1 of data at various Upsilon resonances, Belle also obtained the many other physics results described in this article.

244 citations

Journal ArticleDOI
TL;DR: The last part of the twentieth century has experienced a huge resurgence of activity in the field of coherent light-matter interaction, more so in attempting to exert control over such interactions as discussed by the authors.

243 citations

Journal ArticleDOI
B. P. Abbott1, Richard J. Abbott1, T. D. Abbott2, Fausto Acernese3  +1137 moreInstitutions (125)
TL;DR: In this paper, the authors presented a search for GWs from the remnant of the binary neutron star merger GW170817 using data from Advanced LIGO and Advanced Virgo.
Abstract: The first observation of a binary neutron star (NS) coalescence by the Advanced LIGO and Advanced Virgo gravitational-wave (GW) detectors offers an unprecedented opportunity to study matter under the most extreme conditions. After such a merger, a compact remnant is left over whose nature depends primarily on the masses of the inspiraling objects and on the equation of state of nuclear matter. This could be either a black hole (BH) or an NS, with the latter being either long-lived or too massive for stability implying delayed collapse to a BH. Here, we present a search for GWs from the remnant of the binary NS merger GW170817 using data from Advanced LIGO and Advanced Virgo. We search for short- (lesssim1 s) and intermediate-duration (lesssim500 s) signals, which include GW emission from a hypermassive NS or supramassive NS, respectively. We find no signal from the post-merger remnant. Our derived strain upper limits are more than an order of magnitude larger than those predicted by most models. For short signals, our best upper limit on the root sum square of the GW strain emitted from 1–4 kHz is ${h}_{\mathrm{rss}}^{50 \% }=2.1\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ at 50% detection efficiency. For intermediate-duration signals, our best upper limit at 50% detection efficiency is ${h}_{\mathrm{rss}}^{50 \% }=8.4\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ for a millisecond magnetar model, and ${h}_{\mathrm{rss}}^{50 \% }=5.9\times {10}^{-22}\,{\mathrm{Hz}}^{-1/2}$ for a bar-mode model. These results indicate that post-merger emission from a similar event may be detectable when advanced detectors reach design sensitivity or with next-generation detectors.

242 citations


Authors

Showing all 7857 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Suvadeep Bose154960129071
Subir Sarkar1491542144614
Sw. Banerjee1461906124364
Dipanwita Dutta1431651103866
Ajit Kumar Mohanty141112493062
Tariq Aziz138164696586
Andrew Mehta1371444101810
Suchandra Dutta134126587709
Kajari Mazumdar134129594253
Bobby Samir Acharya1331121100545
Gobinda Majumder133152387732
Eric Conte132120684593
Prashant Shukla131134185287
Alessandro Montanari131138793071
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

90% related

University of Paris-Sud
52.7K papers, 2.1M citations

90% related

Los Alamos National Laboratory
74.6K papers, 2.9M citations

90% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

89% related

Weizmann Institute of Science
54.5K papers, 3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
2022128
2021939
20201,085
20191,100
20181,040