scispace - formally typeset
Search or ask a question
Institution

Technical University of Berlin

EducationBerlin, Germany
About: Technical University of Berlin is a education organization based out in Berlin, Germany. It is known for research contribution in the topics: Laser & Catalysis. The organization has 27292 authors who have published 59342 publications receiving 1414623 citations. The organization is also known as: Technische Universität Berlin & TU Berlin.


Papers
More filters
Journal ArticleDOI
TL;DR: Vector momentum distributions of Ne(n+) (n = 1,2,3) ions created by 30 fs, approximately 1 PW/cm(2) laser pulses at 795 nm have been measured using recoil-ion momentum spectroscopy, ruling out mechanisms based on an instantaneous release of two (or more) electrons as a dominant contribution to nonsequential strong-field multiple ionization.
Abstract: Vector momentum distributions of ${\mathrm{Ne}}^{n+}$ $(n\phantom{\rule{0ex}{0ex}}=\phantom{\rule{0ex}{0ex}}1,2,3)$ ions created by 30 fs, $\mathrm{\ensuremath{\approx}}1\mathrm{PW}/{\mathrm{cm}}^{2}$ laser pulses at 795 nm have been measured using recoil-ion momentum spectroscopy. Distinct maxima along the light polarization axis are observed at 4.0 and 7.5 a.u. for ${\mathrm{Ne}}^{2+}$ and ${\mathrm{Ne}}^{3+}$ production, respectively. Hence, mechanisms based on an instantaneous release of two (or more) electrons can be ruled out as a dominant contribution to nonsequential strong-field multiple ionization. The positions of the maxima are in accord with kinematical constraints set by the classical ``rescattering model.''

280 citations

Journal ArticleDOI
TL;DR: In this paper, nanostructured iridium nanodendrites (Ir-ND) supported on antimony doped tin oxide (ATO) were proposed as efficient and stable catalysts for PEM electrolyzers.
Abstract: Reducing the noble-metal catalyst content of acid Polymer Electrolyte Membrane (PEM) water electrolyzers without compromising catalytic activity and stability is a goal of fundamental scientific interest and substantial technical importance for cost-effective hydrogen-based energy storage. This study presents nanostructured iridium nanodendrites (Ir-ND) supported on antimony doped tin oxide (ATO) as efficient and stable water splitting catalysts for PEM electrolyzers. The active Ir-ND structures exhibited superior structural and morphological properties, such as particle size and surface area compared to commercial state-of-art Ir catalysts. Supported on tailored corrosion-stable conductive oxides, the Ir-ND catalysts exhibited a more than 2-fold larger kinetic water splitting activity compared with supported Ir nanoparticles, and a more than 8-fold larger catalytic activity than commercial Ir blacks. In single-cell PEM electrolyzer tests, the Ir-ND/ATO outperformed commercial Ir catalysts more than 2-fold at technological current densities of 1.5 A cm−2 at a mere 1.80 V cell voltage, while showing excellent durability under constant current conditions. We conclude that Ir-ND/ATO catalysts have the potential to substantially reduce the required noble metal loading, while maintaining their catalytic performance, both in idealized three-electrode set ups and in the real electrolyzer device environments.

280 citations

Journal ArticleDOI
TL;DR: The review indicated that quality of social support, patients' coping strategies and several indicators of mental and physical health were consistently associated with post-traumatic growth, pointing to the potential adaptive significance of PTG.
Abstract: Purpose. The diagnosis of a life-threatening illness can be an extremely stressful, traumatic experience. However, many survivors report also various positive changes, referred in empirical literature as post-traumatic growth (PTG). Empirical studies that documented stress disorders and PTG in patients and survivors of life-threatening diseases are reviewed in three areas: Predictors of PTG, relationships between PTG and indicators of mental health and the impact of PTG on the process of convalescence.Method. The literature review was completed by making use of three major databases – PsycINFO, PILOTS and Medline.Results. The majority of the studies investigated PTG and its relationships to health indicators after the diagnosis of cancer, HIV/AIDS, cardiac disease, multiple sclerosis and rheumatoid arthritis. The review indicated that quality of social support, patients' coping strategies and several indicators of mental and physical health were consistently associated with post-traumatic growth. Associat...

280 citations

Journal ArticleDOI
TL;DR: It is shown that surface distortion is pivotal to rationalize the electrocatalytic properties of state-of-the-art of PtNi/C nanocatalysts with distinct atomic composition, size, shape and degree of surface defectiveness under a simulated PEMFC cathode environment.
Abstract: Tuning the surface structure at the atomic level is of primary importance to simultaneously meet the electrocatalytic performance and stability criteria required for the development of low-temperature proton-exchange membrane fuel cells (PEMFCs). However, transposing the knowledge acquired on extended, model surfaces to practical nanomaterials remains highly challenging. Here, we propose ‘surface distortion’ as a novel structural descriptor, which is able to reconciliate and unify seemingly opposing notions and contradictory experimental observations in regards to the electrocatalytic oxygen reduction reaction (ORR) reactivity. Beyond its unifying character, we show that surface distortion is pivotal to rationalize the electrocatalytic properties of state-of-the-art of PtNi/C nanocatalysts with distinct atomic composition, size, shape and degree of surface defectiveness under a simulated PEMFC cathode environment. Our study brings fundamental and practical insights into the role of surface defects in electrocatalysis and highlights strategies to design more durable ORR nanocatalysts. Tuning surface structure is key for electrocatalytic performance and stability of proton-exchange membrane fuel cells. Surface distortion as a structural descriptor can help to clarify the role of surface defects and to design enhanced nanocatalysts.

279 citations

Proceedings ArticleDOI
13 Aug 2012
TL;DR: A first-of-its-kind and in-depth analysis of one of the largest IXPs worldwide based on nine months' worth of sFlow records collected at that IXP in 2011 suggests that these large IXPs can be viewed as a microcosm of the Internet ecosystem itself and argues for a re-assessment of the mental picture the community has about this ecosystem.
Abstract: The largest IXPs carry on a daily basis traffic volumes in the petabyte range, similar to what some of the largest global ISPs reportedly handle. This little-known fact is due to a few hundreds of member ASes exchanging traffic with one another over the IXP's infrastructure. This paper reports on a first-of-its-kind and in-depth analysis of one of the largest IXPs worldwide based on nine months' worth of sFlow records collected at that IXP in 2011.A main finding of our study is that the number of actual peering links at this single IXP exceeds the number of total AS links of the peer-peer type in the entire Internet known as of 2010! To explain such a surprisingly rich peering fabric, we examine in detail this IXP's ecosystem and highlight the diversity of networks that are members at this IXP and connect there with other member ASes for reasons that are similarly diverse, but can be partially inferred from their business types and observed traffic patterns. In the process, we investigate this IXP's traffic matrix and illustrate what its temporal and structural properties can tell us about the member ASes that generated the traffic in the first place. While our results suggest that these large IXPs can be viewed as a microcosm of the Internet ecosystem itself, they also argue for a re-assessment of the mental picture that our community has about this ecosystem.

278 citations


Authors

Showing all 27602 results

NameH-indexPapersCitations
Markus Antonietti1761068127235
Jian Li133286387131
Klaus-Robert Müller12976479391
Michael Wagner12435154251
Shi Xue Dou122202874031
Xinchen Wang12034965072
Michael S. Feld11955251968
Jian Liu117209073156
Ary A. Hoffmann11390755354
Stefan Grimme113680105087
David M. Karl11246148702
Lester Packer11275163116
Andreas Heinz108107845002
Horst Weller10545144273
G. Hughes10395746632
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

Technische Universität München
123.4K papers, 4M citations

92% related

École Normale Supérieure
99.4K papers, 3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023191
2022650
20213,307
20203,387
20193,105
20182,910