scispace - formally typeset
Search or ask a question
Institution

Technical University of Berlin

EducationBerlin, Germany
About: Technical University of Berlin is a education organization based out in Berlin, Germany. It is known for research contribution in the topics: Laser & Catalysis. The organization has 27292 authors who have published 59342 publications receiving 1414623 citations. The organization is also known as: Technische Universität Berlin & TU Berlin.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed line shape analysis of the tangential G-band feature attributable to metallic single-walled carbon nanotubes is presented, and it is shown that both the frequency and linewidth of the Breit-Wigner-Fano (BWF) component are diameter dependent.
Abstract: A detailed line-shape analysis of the tangential G-band feature attributable to metallic single-walled carbon nanotubes is presented. Only two components are needed to account for the entire G-band feature for metallic nanotubes. The higher-frequency component has a Lorentzian line shape, and the lower one has a Breit-Wigner-Fano (BWF) line shape. Through comparisons of the Raman tangential G-band spectra from three different diameter distributions of carbon nanotubes, we find that both the frequency and linewidth of the BWF component are diameter dependent and show functional forms consistent with theory. The nanotube curvature is responsible for both the frequency differences between the two components of the characteristic metallic G-band spectrum and the BWF coupling of the lower-frequency component. Surface-enhanced Raman spectroscopy studies provide supporting evidence that the phonon BWF coupling is to an electronic continuum.

510 citations

Journal ArticleDOI
TL;DR: In this article, a thermally prepared Ir-Ni mixed oxide thin film catalysts for the electrochemical oxygen evolution reaction (OER) under highly corrosive conditions such as in acidic proton exchange membrane (PEM) electrolyzers and photoelectrochemical cells (PEC).
Abstract: Mixed bimetallic oxides offer great opportunities for a systematic tuning of electrocatalytic activity and stability. Here, we demonstrate the power of this strategy using well-defined thermally prepared Ir–Ni mixed oxide thin film catalysts for the electrochemical oxygen evolution reaction (OER) under highly corrosive conditions such as in acidic proton exchange membrane (PEM) electrolyzers and photoelectrochemical cells (PEC). Variation of the Ir to Ni ratio resulted in a volcano type OER activity curve with an unprecedented 20-fold improvement in Ir mass-based activity over pure Ir oxide. In situ spectroscopic probing of metal dissolution indicated that, against common views, activity and stability are not directly anticorrelated. To uncover activity and stability controlling parameters, the Ir–Ni mixed thin oxide film catalysts were characterized by a wide array of spectroscopic, microscopic, scattering, and electrochemical techniques in conjunction with DFT theoretical computations. By means of an in...

509 citations

Journal ArticleDOI
TL;DR: It is demonstrated how shape selectivity and optimized surface composition result in exceptional oxygen reduction activity of octahedral PtNi nanoparticles (NPs) by utilizing a facile, completely surfactant-free solvothermal synthesis.
Abstract: We demonstrate how shape selectivity and optimized surface composition result in exceptional oxygen reduction activity of octahedral PtNi nanoparticles (NPs). The alloy octahedra were obtained by utilizing a facile, completely surfactant-free solvothermal synthesis. We show that the choice of precursor ligands controls the shape, while the reaction time tunes the surface Pt:Ni composition. The 9.5 nm sized PtNi octahedra reached a 10-fold surface area-specific (∼3.14 mA/cmPt2) as well as an unprecedented 10-fold Pt mass based (∼1.45 A/mgPt) activity gain over the state-of-art Pt electrocatalyst, approaching the theoretically predicted limits.

507 citations

Journal ArticleDOI
TL;DR: The structural and functional connectivity profile of effective DBS to the subthalamic nucleus (STN) is identified and its ability to predict outcome in an independent cohort is tested.
Abstract: Objective: The benefit of deep brain stimulation (DBS) for Parkinson's disease (PD) may depend on connectivity between the stimulation site and other brain regions, but which regions and whether connectivity can predict outcome in patients remains unknown. Here, we identify the structural and functional connectivity profile of effective DBS to the subthalamic nucleus (STN) and test its ability to predict outcome in an independent cohort. Methods: A training dataset of 51 PD patients with STN DBS was combined with publicly available human connectome data (diffusion tractography and resting state functional connectivity) to identify connections reliably associated with clinical improvement (motor score of Unified Parkinson's Disease Rating Scale). This connectivity profile was then used to predict outcome in an independent cohort of 44 patients from a different center. Results: In the training dataset, connectivity between the DBS electrode and a distributed network of brain regions correlated with clinical response including structural connectivity to supplementary motor area and functional anticorrelation to primary motor cortex (p < 0.001). This same connectivity profile predicted response in an independent patient cohort (p < 0.01). Structural and functional connectivity were independent predictors of clinical improvement (p < 0.001) and estimated response in individual patients with an average error of 15% UPDRS improvement. Results were similar using connectome data from normal subjects or a connectome age, sex, and disease-matched to our DBS patients. Interpretation: Effective STN-DBS for PD is associated with a specific connectivity profile that can predict clinical outcome across independent cohorts. This prediction does not require specialized imaging in PD patients themselves. This article is protected by copyright. All rights reserved.

499 citations


Authors

Showing all 27602 results

NameH-indexPapersCitations
Markus Antonietti1761068127235
Jian Li133286387131
Klaus-Robert Müller12976479391
Michael Wagner12435154251
Shi Xue Dou122202874031
Xinchen Wang12034965072
Michael S. Feld11955251968
Jian Liu117209073156
Ary A. Hoffmann11390755354
Stefan Grimme113680105087
David M. Karl11246148702
Lester Packer11275163116
Andreas Heinz108107845002
Horst Weller10545144273
G. Hughes10395746632
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

Technische Universität München
123.4K papers, 4M citations

92% related

École Normale Supérieure
99.4K papers, 3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023191
2022650
20213,307
20203,387
20193,105
20182,910