scispace - formally typeset
Search or ask a question
Institution

Technical University of Berlin

EducationBerlin, Germany
About: Technical University of Berlin is a education organization based out in Berlin, Germany. It is known for research contribution in the topics: Laser & Catalysis. The organization has 27292 authors who have published 59342 publications receiving 1414623 citations. The organization is also known as: Technische Universität Berlin & TU Berlin.


Papers
More filters
Journal ArticleDOI
27 Jun 2019-Cell
TL;DR: This work analyzes the translatomes of 80 human hearts to identify new translation events and quantify the effect of translational regulation, and shows extensive translational control of cardiac gene expression, which is orchestrated in a process-specific manner.

361 citations

Proceedings Article
01 Jan 2019
TL;DR: In this paper, an empirical measure of the approximate accuracy of feature importance estimates in deep neural networks is proposed, and it is shown that ensemble based approaches outperform a random assignment of importance.
Abstract: We propose an empirical measure of the approximate accuracy of feature importance estimates in deep neural networks. Our results across several large-scale image classification datasets show that many popular interpretability methods produce estimates of feature importance that are not better than a random designation of feature importance. Only certain ensemble based approaches---VarGrad and SmoothGrad-Squared---outperform such a random assignment of importance. The manner of ensembling remains critical, we show that some approaches do no better then the underlying method but carry a far higher computational burden.

361 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigate the effect of digitalization on energy consumption using an analytical model, and investigate four effects: (1) direct effects from the production, usage and disposal of information and communication technologies (ICT), (2) energy efficiency increases from digitalization, (3) economic growth from increases in labor and energy productivities and (4) sectoral change/tertiarization from the rise of ICT services.

360 citations

Proceedings Article
03 Jul 2018
TL;DR: In this paper, a single-layer recurrent neural network (WaveRNN) with a dual softmax layer was proposed for text-to-speech synthesis, which achieved state-of-the-art results in audio, visual and textual domains.
Abstract: Sequential models achieve state-of-the-art results in audio, visual and textual domains with respect to both estimating the data distribution and generating high-quality samples. Efficient sampling for this class of models has however remained an elusive problem. With a focus on text-to-speech synthesis, we describe a set of general techniques for reducing sampling time while maintaining high output quality. We first describe a single-layer recurrent neural network, the WaveRNN, with a dual softmax layer that matches the quality of the state-of-the-art WaveNet model. The compact form of the network makes it possible to generate 24kHz 16-bit audio 4x faster than real time on a GPU. Second, we apply a weight pruning technique to reduce the number of weights in the WaveRNN. We find that, for a constant number of parameters, large sparse networks perform better than small dense networks and this relationship holds for sparsity levels beyond 96%. The small number of weights in a Sparse WaveRNN makes it possible to sample high-fidelity audio on a mobile CPU in real time. Finally, we propose a new generation scheme based on subscaling that folds a long sequence into a batch of shorter sequences and allows one to generate multiple samples at once. The Subscale WaveRNN produces 16 samples per step without loss of quality and offers an orthogonal method for increasing sampling efficiency.

358 citations

Journal ArticleDOI
TL;DR: A human--machine interface to control exoskeletons that utilizes electrical signals from the muscles of the operator as the main means of information transportation and a calibration algorithm is presented that relies exclusively on sensors mounted on the exoskeleton.
Abstract: This paper presents a human--machine interface to control exoskeletons that utilizes electrical signals from the muscles of the operator as the main means of information transportation. These signals are recorded with electrodes attached to the skin on top of selected muscles and reflect the activation of the observed muscle. They are evaluated by a sophisticated but simplified biomechanical model of the human body to derive the desired action of the operator. A support action is computed in accordance to the desired action and is executed by the exoskeleton. The biomechanical model fuses results from different biomechanical and biomedical research groups and performs a sensible simplification considering the intended application. Some of the model parameters reflect properties of the individual human operator and his or her current body state. A calibration algorithm for these parameters is presented that relies exclusively on sensors mounted on the exoskeleton. An exoskeleton for knee joint support was designed and constructed to verify the model and to investigate the interaction between operator and machine in experiments with force support during everyday movements.

358 citations


Authors

Showing all 27602 results

NameH-indexPapersCitations
Markus Antonietti1761068127235
Jian Li133286387131
Klaus-Robert Müller12976479391
Michael Wagner12435154251
Shi Xue Dou122202874031
Xinchen Wang12034965072
Michael S. Feld11955251968
Jian Liu117209073156
Ary A. Hoffmann11390755354
Stefan Grimme113680105087
David M. Karl11246148702
Lester Packer11275163116
Andreas Heinz108107845002
Horst Weller10545144273
G. Hughes10395746632
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

RWTH Aachen University
96.2K papers, 2.5M citations

93% related

Technische Universität München
123.4K papers, 4M citations

92% related

École Normale Supérieure
99.4K papers, 3M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023191
2022650
20213,307
20203,387
20193,105
20182,910