scispace - formally typeset

Institution

Technical University of Denmark

EducationKongens Lyngby, Hovedstaden, Denmark
About: Technical University of Denmark is a(n) education organization based out in Kongens Lyngby, Hovedstaden, Denmark. It is known for research contribution in the topic(s): Population & Wind power. The organization has 24126 authors who have published 66394 publication(s) receiving 2443649 citation(s). The organization is also known as: Danmarks Tekniske Universitet & DTU.
Papers
More filters

Journal ArticleDOI
15 Sep 2004-Genome Biology
TL;DR: Details of the aims and methods of Bioconductor, the collaborative creation of extensible software for computational biology and bioinformatics, and current challenges are described.
Abstract: The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples.

11,488 citations


Journal ArticleDOI
Peter A. R. Ade1, Nabila Aghanim2, Monique Arnaud3, M. Ashdown4  +334 moreInstitutions (82)
Abstract: This paper presents cosmological results based on full-mission Planck observations of temperature and polarization anisotropies of the cosmic microwave background (CMB) radiation. Our results are in very good agreement with the 2013 analysis of the Planck nominal-mission temperature data, but with increased precision. The temperature and polarization power spectra are consistent with the standard spatially-flat 6-parameter ΛCDM cosmology with a power-law spectrum of adiabatic scalar perturbations (denoted “base ΛCDM” in this paper). From the Planck temperature data combined with Planck lensing, for this cosmology we find a Hubble constant, H0 = (67.8 ± 0.9) km s-1Mpc-1, a matter density parameter Ωm = 0.308 ± 0.012, and a tilted scalar spectral index with ns = 0.968 ± 0.006, consistent with the 2013 analysis. Note that in this abstract we quote 68% confidence limits on measured parameters and 95% upper limits on other parameters. We present the first results of polarization measurements with the Low Frequency Instrument at large angular scales. Combined with the Planck temperature and lensing data, these measurements give a reionization optical depth of τ = 0.066 ± 0.016, corresponding to a reionization redshift of . These results are consistent with those from WMAP polarization measurements cleaned for dust emission using 353-GHz polarization maps from the High Frequency Instrument. We find no evidence for any departure from base ΛCDM in the neutrino sector of the theory; for example, combining Planck observations with other astrophysical data we find Neff = 3.15 ± 0.23 for the effective number of relativistic degrees of freedom, consistent with the value Neff = 3.046 of the Standard Model of particle physics. The sum of neutrino masses is constrained to ∑ mν < 0.23 eV. The spatial curvature of our Universe is found to be very close to zero, with | ΩK | < 0.005. Adding a tensor component as a single-parameter extension to base ΛCDM we find an upper limit on the tensor-to-scalar ratio of r0.002< 0.11, consistent with the Planck 2013 results and consistent with the B-mode polarization constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Adding the BKP B-mode data to our analysis leads to a tighter constraint of r0.002 < 0.09 and disfavours inflationarymodels with a V(φ) ∝ φ2 potential. The addition of Planck polarization data leads to strong constraints on deviations from a purely adiabatic spectrum of fluctuations. We find no evidence for any contribution from isocurvature perturbations or from cosmic defects. Combining Planck data with other astrophysical data, including Type Ia supernovae, the equation of state of dark energy is constrained to w = −1.006 ± 0.045, consistent with the expected value for a cosmological constant. The standard big bang nucleosynthesis predictions for the helium and deuterium abundances for the best-fit Planck base ΛCDM cosmology are in excellent agreement with observations. We also constraints on annihilating dark matter and on possible deviations from the standard recombination history. In neither case do we find no evidence for new physics. The Planck results for base ΛCDM are in good agreement with baryon acoustic oscillation data and with the JLA sample of Type Ia supernovae. However, as in the 2013 analysis, the amplitude of the fluctuation spectrum is found to be higher than inferred from some analyses of rich cluster counts and weak gravitational lensing. We show that these tensions cannot easily be resolved with simple modifications of the base ΛCDM cosmology. Apart from these tensions, the base ΛCDM cosmology provides an excellent description of the Planck CMB observations and many other astrophysical data sets.

10,334 citations


Journal ArticleDOI
TL;DR: A new membrane protein topology prediction method, TMHMM, based on a hidden Markov model is described and validated, and it is discovered that proteins with N(in)-C(in) topologies are strongly preferred in all examined organisms, except Caenorhabditis elegans, where the large number of 7TM receptors increases the counts for N(out)-C-in topologies.
Abstract: We describe and validate a new membrane protein topology prediction method, TMHMM, based on a hidden Markov model. We present a detailed analysis of TMHMM's performance, and show that it correctly predicts 97-98 % of the transmembrane helices. Additionally, TMHMM can discriminate between soluble and membrane proteins with both specificity and sensitivity better than 99 %, although the accuracy drops when signal peptides are present. This high degree of accuracy allowed us to predict reliably integral membrane proteins in a large collection of genomes. Based on these predictions, we estimate that 20-30 % of all genes in most genomes encode membrane proteins, which is in agreement with previous estimates. We further discovered that proteins with N(in)-C(in) topologies are strongly preferred in all examined organisms, except Caenorhabditis elegans, where the large number of 7TM receptors increases the counts for N(out)-C(in) topologies. We discuss the possible relevance of this finding for our understanding of membrane protein assembly mechanisms. A TMHMM prediction service is available at http://www.cbs.dtu.dk/services/TMHMM/.

10,165 citations


Journal ArticleDOI
Adam Auton1, Gonçalo R. Abecasis2, David Altshuler3, Richard Durbin4  +514 moreInstitutions (90)
01 Oct 2015-Nature
TL;DR: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations, and has reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-generation sequencing, deep exome sequencing, and dense microarray genotyping.
Abstract: The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies.

9,821 citations


Journal ArticleDOI
01 Oct 2011-Nature Methods
TL;DR: SignalP 4.0 was the best signal-peptide predictor for all three organism types but was not in all cases as good as SignalP 3.0 according to cleavage-site sensitivity or signal- peptide correlation when there are no transmembrane proteins present.
Abstract: We benchmarked SignalP 4.0 against SignalP 3.0 and ten other signal peptide prediction algorithms (Fig. 1). We compared prediction performance using the Matthews correlation coefficient16, for which each sequence was counted as a true or false positive or negative. To test SignalP 4.0 performance, we did not use data that had been used in training the networks or selecting the optimal architecture, and the test data did not contain homologs to the training and optimization data (Supplementary Methods). The test set for SignalP 3.0 was also independent of the training set because we removed sequences used to construct SignalP 3.0 and their homologs from the benchmark data. For other algorithms more recent than SignalP 3.0, the benchmark data may include data used to train the methods, possibly leading to slight overestimations of their performance. Our results show that SignalP 4.0 was the best signal-peptide predictor for all three organism types (Fig. 1). This comes at a price, however, because SignalP 4.0 was not in all cases as good as SignalP 3.0 according to cleavage-site sensitivity or signal-peptide correlation when there are no transmembrane proteins present (Supplementary Results). An ideal method would have the best SignalP 4.0: discriminating signal peptides from transmembrane regions

7,784 citations


Authors

Showing all 24126 results

NameH-indexPapersCitations
Peer Bork206697245427
Jens K. Nørskov184706146151
Jens Nielsen1491752104005
Bernhard O. Palsson14783185051
Jian Yang1421818111166
Kim Overvad139119686018
Bernard Henrissat139593100002
Torben Jørgensen13588386822
Joel N. Hirschhorn133431101061
John W. Hutchinson12941974747
Robert J. Cava125104271819
Robert A. Harrington12478968023
Hans Ulrik Nørgaard-Nielsen12429584595
M. Linden-Vørnle12023580049
Allan Hornstrup11832883519
Network Information
Related Institutions (5)
ETH Zurich

122.4K papers, 5.1M citations

94% related

Texas A&M University

164.3K papers, 5.7M citations

93% related

Georgia Institute of Technology

119K papers, 4.6M citations

93% related

Centre national de la recherche scientifique

382.4K papers, 13.6M citations

93% related

Spanish National Research Council

220.4K papers, 7.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2022179
20214,527
20204,532
20193,792
20183,665
20173,776