scispace - formally typeset
Search or ask a question

Showing papers by "Technical University of Denmark published in 2009"


Journal ArticleDOI
TL;DR: In this paper, the entire process leading to polymer solar cells is broken down into the individual steps and the available techniques and materials for each step are described with focus on the particular advantages and disadvantages associated with each case.

3,090 citations


Journal ArticleDOI
TL;DR: The first steps towards using computational methods to design new catalysts are reviewed and how, in the future, such methods may be used to engineer the electronic structure of the active surface by changing its composition and structure are discussed.
Abstract: Over the past decade the theoretical description of surface reactions has undergone a radical development. Advances in density functional theory mean it is now possible to describe catalytic reactions at surfaces with the detail and accuracy required for computational results to compare favourably with experiments. Theoretical methods can be used to describe surface chemical reactions in detail and to understand variations in catalytic activity from one catalyst to another. Here, we review the first steps towards using computational methods to design new catalysts. Examples include screening for catalysts with increased activity and catalysts with improved selectivity. We discuss how, in the future, such methods may be used to engineer the electronic structure of the active surface by changing its composition and structure.

3,023 citations


Journal ArticleDOI
TL;DR: A review of recent developments of LCA methods, focusing on some areas where there has been an intense methodological development during the last years, and some of the emerging issues.

2,683 citations


Journal ArticleDOI
TL;DR: A new set of ORR electrocatalysts consisting of Pd or Pt alloyed with early transition metals such as Sc or Y, identified using density functional theory calculations as being the most stable Pt- and Pd-based binary alloys with ORR activity likely to be better than Pt.
Abstract: The widespread use of low-temperature polymer electrolyte membrane fuel cells for mobile applications will require significant reductions in the amount of expensive Pt contained within their cathodes, which drive the oxygen reduction reaction (ORR). Although progress has been made in this respect, further reductions through the development of more active and stable electrocatalysts are still necessary. Here we describe a new set of ORR electrocatalysts consisting of Pd or Pt alloyed with early transition metals such as Sc or Y. They were identified using density functional theory calculations as being the most stable Pt- and Pd-based binary alloys with ORR activity likely to be better than Pt. Electrochemical measurements show that the activity of polycrystalline Pt(3)Sc and Pt(3)Y electrodes is enhanced relative to pure Pt by a factor of 1.5-1.8 and 6-10, respectively, in the range 0.9-0.87 V.

2,588 citations


Journal ArticleDOI
TL;DR: In this paper, the authors discuss the present status of battery energy storage technology and methods of assessing their economic viability and impact on power system operation and suggest a likely future outlook for the battery technologies and the electric hybrid vehicles in the context of power system applications.

1,627 citations


Journal ArticleDOI
TL;DR: In this article, the authors present some guidelines for biomethane potential assays prepared by the Task Group for the Anaerobic Biodegradation, Activity and Inhibition Assays of the International Water Association.

1,606 citations


Journal ArticleDOI
30 Jan 2009-Science
TL;DR: The maximum strength of nanotwinned copper samples with different twin thicknesses is investigated, finding that the strength increases with decreasing twin thickness, reaching a maximum at 15 nanometers, followed by a softening at smaller values that is accompanied by enhanced strain hardening and tensile ductility.
Abstract: [Lu, L.; Chen, X.; Lu, K.] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China. [Huang, X.] Tech Univ Denmark, Riso Natl Lab Sustainable Energy, Ctr Fundamental Res Met Struct Four Dimens, Dept Mat Res, DK-4000 Roskilde, Denmark.;Lu, L (reprint author), Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China;llu@imr.ac.cn

1,602 citations


Journal ArticleDOI
TL;DR: Intensive animal production areas need suitable manure management, aiming to export and to redistribute the excess of nutrients from manure and to optimize their recycling, to avoid over-fertilization.

1,466 citations


Journal ArticleDOI
TL;DR: In this article, an inverted polymer solar cell geometry comprising a total of five layers was optimized using laboratory scale cells and the operational stability was studied under model atmospheres, where the inverted devices were compared to model devices with a normal geometry where the order of the layers was substrate-ITO-PEDOT:PSS-(active layer)-aluminium.
Abstract: An inverted polymer solar cell geometry comprising a total of five layers was optimized using laboratory scale cells and the operational stability was studied under model atmospheres. The device geometry was substrate-ITO-ZnO-(active layer)-PEDOT:PSS-silver with P3HT-PCBM as the active layer. The inverted devices were compared to model devices with a normal geometry where the order of the layers was substrate-ITO-PEDOT:PSS-(active layer)-aluminium. In both cases illumination was through the substrate which requires that it is transparent. Both device types were optimized to a power conversion efficiency of 2.7% (1000 W m−2, AM1.5G, 72 ± 2 °C). The devices were operated under illumination while being subjected to different atmospheres to identify the dominant modes of degradation. Dry nitrogen (99.999%), dry oxygen (99.5%), humid nitrogen (90 ± 5% relative humidity) and ambient atmosphere (20% oxygen, 20 ± 5% relative humidity) were employed and both device types were found to be stable in a nitrogen atmosphere during the test period of 200 hours. The devices with a normal geometry where an aluminium electrode is employed gave stable operation in dry oxygen but did not give stable device operation in the presence of humidity. The inverted devices behaved oppositely where the less reactive silver electrode gave stable operation in the presence of humidity but poor stability in the presence of oxygen. The inverted model device was then used to develop a new process giving access to fully roll-to-roll (R2R) processed polymer solar cells entirely by solution processing starting from a polyethyleneterephthalate (PET) substrate with a layer of indium-tin-oxide (ITO). All processing was performed in air without vacuum coating steps and modules comprising eight serially connected cells gave power conversion efficiencies as high as 2.1% for the full module with 120 cm2 active area (AM1.5G, 393 W m−2) and up to 2.3% for modules with 4.8 cm2 active area (AM1.5G, 1000 W m−2).

1,237 citations


Journal ArticleDOI
TL;DR: In this article, the authors present an overview of the development of proton exchange membrane fuel cells (PEMFCs), including polymer synthesis, membrane casting, physicochemical characterizations and fuel cell technologies.

1,156 citations


Journal ArticleDOI
TL;DR: An overview of the techniques of electron tomography and electron holography is presented and their capabilities with the aid of case studies that span materials science and the interface between the physical sciences and the life sciences are demonstrated.
Abstract: The rapid development of electron tomography, in particular the introduction of novel tomographic imaging modes, has led to the visualization and analysis of three-dimensional structural and chemical information from materials at the nanometre level. In addition, the phase information revealed in electron holograms allows electrostatic and magnetic potentials to be mapped quantitatively with high spatial resolution and, when combined with tomography, in three dimensions. Here we present an overview of the techniques of electron tomography and electron holography and demonstrate their capabilities with the aid of case studies that span materials science and the interface between the physical sciences and the life sciences.

Journal ArticleDOI
TL;DR: The versatile polymer solar cell technology is demonstrated through the use of abstract forms for the active area, a flexible substrate, processing entirely from solution, complete processing in air using commonly available screen printing, and finally, simple mechanical encapsulation using a flexible packaging material.

Journal ArticleDOI
TL;DR: In this article, a complete polymer solar cell module was constructed using all-solution processing with no vacuum steps and full roll-to-roll (R2R) processing.

Journal ArticleDOI
TL;DR: The hydrogen evolution reaction (HER) on carbon supported MoS2 nanoparticles is investigated and compared to findings with previously published work on Au(111) supported Mo S2, and calculated values for the hydrogen binding energies on each system are compared.
Abstract: The hydrogen evolution reaction (HER) on carbon supported MoS2nanoparticles is investigated and compared to findings with previously published work on Au(111) supported MoS2. An investigation into MoS2oxidation is presented and used to quantify the surface concentration of MoS2. Other metal sulfides with morphologies similar to MoS2 such as WS2, cobalt-promoted WS2, and cobalt-promoted MoS2 were also investigated in the search for improved HER activity. Experimental findings are compared to density functional theory (DFT) calculated values for the hydrogen binding energies (ΔGH) on each system.

Journal ArticleDOI
TL;DR: It is shown that the NetMHCpan-2.0 method can accurately predict binding to uncharacterized HLA molecules, including HLA-C and Hla-G, and is demonstrated to accurately predict peptide binding to chimpanzee and macaque MHC class I molecules.
Abstract: Binding of peptides to major histocompatibility complex (MHC) molecules is the single most selective step in the recognition of pathogens by the cellular immune system. The human MHC genomic region (called HLA) is extremely polymorphic comprising several thousand alleles, each encoding a distinct MHC molecule. The potentially unique specificity of the majority of HLA alleles that have been identified to date remains uncharacterized. Likewise, only a limited number of chimpanzee and rhesus macaque MHC class I molecules have been characterized experimentally. Here, we present NetMHCpan-2.0, a method that generates quantitative predictions of the affinity of any peptide–MHC class I interaction. NetMHCpan-2.0 has been trained on the hitherto largest set of quantitative MHC binding data available, covering HLA-A and HLA-B, as well as chimpanzee, rhesus macaque, gorilla, and mouse MHC class I molecules. We show that the NetMHCpan-2.0 method can accurately predict binding to uncharacterized HLA molecules, including HLA-C and HLA-G. Moreover, NetMHCpan-2.0 is demonstrated to accurately predict peptide binding to chimpanzee and macaque MHC class I molecules. The power of NetMHCpan-2.0 to guide immunologists in interpreting cellular immune responses in large out-bred populations is demonstrated. Further, we used NetMHCpan-2.0 to predict potential binding peptides for the pig MHC class I molecule SLA-1*0401. Ninety-three percent of the predicted peptides were demonstrated to bind stronger than 500 nM. The high performance of NetMHCpan-2.0 for non-human primates documents the method’s ability to provide broad allelic coverage also beyond human MHC molecules. The method is available at http://www.cbs.dtu.dk/services/NetMHCpan .

Journal ArticleDOI
TL;DR: Most plasticizers appear to act by interfering with the functioning of various hormone systems, but some phthalates have wider pathways of disruption, and given the sensitivity of some invertebrates, effects assessments are warranted in other invertebrate phyla.
Abstract: This review provides a critical analysis of the biological effects of the most widely used plasticizers, including dibutyl phthalate, diethylhexyl phthalate, dimethyl phthalate, butyl benzyl phthalate and bisphenol A (BPA), on wildlife, with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians. Moreover, the paper provides novel data on the biological effects of some of these plasticizers in invertebrates, fish and amphibians. Phthalates and BPA have been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations. Molluscs, crustaceans and amphibians appear to be especially sensitive to these compounds, and biological effects are observed at environmentally relevant exposures in the low ng l−1 to µg l−1 range. In contrast, most effects in fish (except for disturbance in spermatogenesis) occur at higher concentrations. Most plasticizers appear to act by interfering with the functioning of various hormone systems, but some phthalates have wider pathways of disruption. Effect concentrations of plasticizers in laboratory experiments coincide with measured environmental concentrations, and thus there is a very real potential for effects of these chemicals on some wildlife populations. The most striking gaps in our current knowledge on the impacts of plasticizers on wildlife are the lack of data for long-term exposures to environmentally relevant concentrations and their ecotoxicity when part of complex mixtures. Furthermore, the hazard of plasticizers has been investigated in annelids, molluscs and arthropods only, and given the sensitivity of some invertebrates, effects assessments are warranted in other invertebrate phyla.

Journal ArticleDOI
TL;DR: In this article, a review of the state-of-the-art in anticorrosive coatings systems is presented, which mainly deals with European experience and practice, including a description of the different environments an anticorerosive coating system may encounter during service.
Abstract: The main objective of this review is to describe some of the important topics related to the use of marine and protective coatings for anticorrosive purposes. In this context, “protective” refers to coatings for containers, offshore constructions, wind turbines, storage tanks, bridges, rail cars, and petrochemical plants while “marine” refers to coatings for ballast tanks, cargo holds and cargo tanks, decks, and engine rooms on ships. The review aims at providing a thorough picture of state-of-the-art in anticorrosive coatings systems. International and national legislation aiming at reducing the emission of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to convince consumers of their suitability for use. An important aspect in the development of new VOC-compliant, high-performance anticorrosive coating systems is a thorough knowledge of the components in anticorrosive coatings, their interactions, their advantages and limitations, as well as a detailed knowledge on the failure modes of anticorrosive coatings. This review, which mainly deals with European experience and practice, includes a description of the different environments an anticorrosive coating system may encounter during service. In addition, examples of test methods and standards for determination of the performance and durability of anticorrosive coatings have been included. The different types of anticorrosive coatings are presented, and the most widely applied generic types of binders and pigments in anticorrosive coatings are listed and described. Furthermore, the protective mechanisms of barrier, sacrificial, and inhibitive coatings are outlined. In the past decades, several alternatives to organic solvent-borne coatings have reached the commercial market. This review also presents some of these technologies and discusses some of their advantages and limitations. Finally, some of the mechanisms leading to degradation and failure of organic coating systems are described, and the reported types of adhesion loss are discussed.

Journal ArticleDOI
TL;DR: Evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone.

Journal ArticleDOI
TL;DR: Results suggest that one such non-N benefit may be due to the impact on soil biology of hydrogenemitted from nodules as a by-product of N2, fixation, which is associated with improvements in availability of N in soils.
Abstract: Data collated from around the world indicate that, for every tonne of shoot dry matter produced by crop legumes, the symbiotic relationship with rhizobia is responsible for fixing, on average on a whole plant basis (shoots and nodulated roots), the equivalent of 30–40 kg of nitrogen (N). Consequently, factors that directly influence legume growth (e.g. water and nutrient availability, disease incidence and pests) tend to be the main determinants of the amounts of N2 fixed. However, practices that either limit the presence of effective rhizobia in the soil (no inoculation, poor inoculant quality), increase soil concentrations of nitrate (excessive tillage, extended fallows, fertilizer N), or enhance competition for soil mineral N (intercropping legumes with cereals) can also be critical. Much of the N2 fixed by the legume is usually removed at harvest in high-protein seed so that the net residual contributions of fixed N to agricultural soils after the harvest of legumegrain may be relatively small.Nonetheless, the inclusion of legumes in a cropping sequence generally improves the productivity of following crops. Whilesome of these rotational effects may be associated with improvements in availability of N in soils, factors unrelated to N also play an important role. Recent results suggest that one such non-N benefit may be due to the impact on soil biology of hydrogenemitted from nodules as a by-product of N2, fixation.

Journal ArticleDOI
TL;DR: In this paper, a two-stage method is proposed to forecast hourly values of solar power for horizons of up to 36 h. The results indicate that for forecasts up to 2 hours ahead, the most important input is the available observations of PV power, while for longer horizons numerical weather predictions (NWPs) are the more important input.

Journal ArticleDOI
TL;DR: A review of the state of the art in understanding the processes involved in the exchange of trace gases and aerosols between the earth's surface and the atmosphere can be found in this article.

Journal ArticleDOI
TL;DR: In this article, a roll-to-roll process for fabrication of polymer solar cells comprising five layers on flexible substrates is presented, where the device geometry is inverted and allow for fabrication on both transparent and non-transparent flexible substrate.

Journal ArticleDOI
TL;DR: This work has implemented a method that predicts the relative surface accessibility of an amino acid and simultaneously predicts the reliability for each prediction, in the form of a Z-score, which is comparable to the performance of the currently best public available method, Real-SPINE.
Abstract: Background Estimation of the reliability of specific real value predictions is nontrivial and the efficacy of this is often questionable. It is important to know if you can trust a given prediction and therefore the best methods associate a prediction with a reliability score or index. For discrete qualitative predictions, the reliability is conventionally estimated as the difference between output scores of selected classes. Such an approach is not feasible for methods that predict a biological feature as a single real value rather than a classification. As a solution to this challenge, we have implemented a method that predicts the relative surface accessibility of an amino acid and simultaneously predicts the reliability for each prediction, in the form of a Z-score.

Journal ArticleDOI
TL;DR: In this article, the authors introduce the practice theory approach in relation to studies of everyday life, domestic practices and consumption, and argue that this approach can be fruitful for ecological economics and other fields interested in the environmental aspects of consumption.

Journal ArticleDOI
TL;DR: In this article, the authors compare different types of models from computational fluid dynamics (CFD) to wind farm models in terms of how accurately they represent wake losses when compared with measurements from offshore wind farms.
Abstract: Average power losses due to wind turbine wakes are of the order of 10 to 20% of total power output in large offshore wind farms. Accurately quantifying power losses due to wakes is, therefore, an important part of overall wind farm economics. The focus of this research is to compare different types of models from computational fluid dynamics (CFD) to wind farm models in terms of how accurately they represent wake losses when compared with measurements from offshore wind farms. The ultimate objective is to improve modelling of flow for large wind farms in order to optimize wind farm layouts to reduce power losses due to wakes and loads. The research presented is part of the EC-funded UpWind project, which aims to radically improve wind turbine and wind farm models in order to continue to improve the costs of wind energy. Reducing wake losses, or even reduce uncertainties in predicting power losses from wakes, contributes to the overall goal of reduced costs. Here, we assess the state of the art in wake and flow modelling for offshore wind farms, the focus so far has been cases at the Horns Rev wind farm, which indicate that wind farm models require modification to reduce under-prediction of wake losses while CFD models typically over-predict wake losses. Further investigation is underway to determine the causes of these discrepancies. Copyright © 2009 John Wiley & Sons, Ltd.

Journal ArticleDOI
TL;DR: In this paper, the authors present a monitoring network that provides cross-sectional and longitudinal information regarding pollutants found in representative buildings, including the proportion of occupants who smoke indoors, as well as the type and concentrations of chemicals that occupants are exposed to.

Journal ArticleDOI
TL;DR: In this article, the authors examined the field of the EPR gedanken experiment, from the original paper of Einstein, Podolsky, and Rosen, through to modern theoretical proposals of how to realize both the continuous-variable and discrete versions of EPR paradox.
Abstract: This Colloquium examines the field of the Einstein, Podolsky, and Rosen (EPR) gedanken experiment, from the original paper of Einstein, Podolsky, and Rosen, through to modern theoretical proposals of how to realize both the continuous-variable and discrete versions of the EPR paradox. The relationship with entanglement and Bell's theorem are analyzed, and the progress to date towards experimental confirmation of the EPR paradox is summarized, with a detailed treatment of the continuous-variable paradox in laser-based experiments. Practical techniques covered include continuous-wave parametric amplifier and optical fiber quantum soliton experiments. Current proposals for extending EPR experiments to massive-particle systems are discussed, including spin squeezing, atomic position entanglement, and quadrature entanglement in ultracold atoms. Finally, applications of this technology to quantum key distribution, quantum teleportation, and entanglement swapping are examined.

Journal ArticleDOI
TL;DR: Thomsen et al. as mentioned in this paper proposed a post-IR IR dating protocol on K-feldspar extracts from a variety of locations and depositional environments and compare the results with those from the conventional IR at 50°C protocol.

Journal ArticleDOI
TL;DR: In this paper, the authors present a method that permits the generation of statistical scenarios of short-term wind generation that accounts for both the interdependence structure of prediction errors and the predictive distributions of wind power production.
Abstract: Short-term (up to 2-3 days ahead) probabilistic forecasts of wind power provide forecast users with a highly valuable information on the uncertainty of expected wind generation. Whatever the type of these probabilistic forecasts, they are produced on a per horizon basis, and hence do not inform on the development of the forecast uncertainty through forecast series. However, this additional information may be paramount for a large class of time-dependent and multi-stage decision-making problems e.g. optimal operation of combined wind-storage systems or multiple-market trading with different gate closures. This issue is addressed here by describing a method that permits the generation of statistical scenarios of short-term wind generation that accounts for both the interdependence structure of prediction errors and the predictive distributions of wind power production. The method is based on the conversion of series of prediction errors to a multivariate Gaussian random variable, the interdependence structure of which can then be summarized by a unique covariance matrix. Such matrix is recursively estimated in order to accommodate long-term variations in the prediction error characteristics. The quality and interest of the methodology are demonstrated with an application to the test case of a multi-MW wind farm over a period of more than two years.

Journal ArticleDOI
TL;DR: In this paper, a two-step annealing process has been used to produce samples with large variations in structural parameters such as boundary spacing, misorientation angle and dislocation density.