scispace - formally typeset
Search or ask a question
Institution

Technical University of Dortmund

EducationDortmund, Nordrhein-Westfalen, Germany
About: Technical University of Dortmund is a education organization based out in Dortmund, Nordrhein-Westfalen, Germany. It is known for research contribution in the topics: Large Hadron Collider & Neutrino. The organization has 13028 authors who have published 27666 publications receiving 615557 citations. The organization is also known as: Dortmund University & University of Dortmund.


Papers
More filters
Journal ArticleDOI
TL;DR: This work designed a defined differentiation process using recombinant laminin substrates to provide instruction and demonstrates efficient hepatocyte specification, cell organization, and significant improvements in cell function and phenotype, moving stem cell-based hepatocytes closer toward biomedical application.
Abstract: Stem cell-derived somatic cells represent an unlimited resource for basic and translational science. Although promising, there are significant hurdles that must be overcome. Our focus is on the generation of the major cell type of the human liver, the hepatocyte. Current protocols produce variable populations of hepatocytes that are the product of using undefined components in the differentiation process. This serves as a significant barrier to scale-up and application. To tackle this issue, we designed a defined differentiation process using recombinant laminin substrates to provide instruction. We demonstrate efficient hepatocyte specification, cell organization, and significant improvements in cell function and phenotype. This is driven in part by the suppression of unfavorable gene regulatory networks that control cell proliferation and migration, pluripotent stem cell self-renewal, and fibroblast and colon specification. We believe that this represents a significant advance, moving stem cell-based hepatocytes closer toward biomedical application.

126 citations

Journal ArticleDOI
TL;DR: Protocols employing specific antibody combinations for immunostaining, confocal imaging, three-dimensional reconstruction of approximately 100-μm-thick tissue blocks and quantification of key architectural features are established for simultaneous visualization of bile canaliculi, sinusoidal endothelial cells, glutamine synthetase, and DAPI for the identification of central veins.
Abstract: Histological alterations often constitute a fingerprint of toxicity and diseases. The extent to which these alterations are cause or consequence of compromised organ function, and the underlying mechanisms involved is a matter of intensive research. In particular, liver disease is often associated with altered tissue microarchitecture, which in turn may compromise perfusion and functionality. Research in this field requires the development and orchestration of new techniques into standardized processing pipelines that can be used to reproducibly quantify tissue architecture. Major bottlenecks include the lack of robust staining, and adequate reconstruction and quantification techniques. To bridge this gap, we established protocols employing specific antibody combinations for immunostaining, confocal imaging, three-dimensional reconstruction of approximately 100-μm-thick tissue blocks and quantification of key architectural features. We describe a standard procedure termed 'liver architectural staining' for the simultaneous visualization of bile canaliculi, sinusoidal endothelial cells, glutamine synthetase (GS) for the identification of central veins, and DAPI as a nuclear marker. Additionally, we present a second standard procedure entitled 'S-phase staining', where S-phase-positive and S-phase-negative nuclei (stained with BrdU and DAPI, respectively), sinusoidal endothelial cells and GS are stained. The techniques include three-dimensional reconstruction of the sinusoidal and bile canalicular networks from the same tissue block, and robust capture of position, size and shape of individual hepatocytes, as well as entire lobules from the same tissue specimen. In addition to the protocols, we have also established image analysis software that allows relational and hierarchical quantifications of different liver substructures (e.g. cells and vascular branches) and events (e.g. cell proliferation and death). Typical results acquired for routinely quantified parameters in adult mice (C57Bl6/N) include the hepatocyte volume (5,128.3 ± 837.8 μm(3)) and the fraction of the hepatocyte surface in contact with the neighbouring hepatocytes (67.4 ± 6.7 %), sinusoids (22.1 ± 4.8 %) and bile canaliculi (9.9 ± 3.8 %). Parameters of the sinusoidal network that we also routinely quantify include the radius of the sinusoids (4.8 ± 2.25 μm), the branching angle (32.5 ± 11.2°), the length of intersection branches (23.93 ± 5.9 μm), the number of intersection nodes per mm(3) (120.3 × 103 ± 42.1 × 10(3)), the average length of sinusoidal vessel per mm(3) (5.4 × 10(3) ± 1.4 × 10(3)mm) and the percentage of vessel volume in relation to the whole liver volume (15.3 ± 3.9) (mean ± standard deviation). Moreover, the provided parameters of the bile canalicular network are: length of the first-order branches (7.5 ± 0.6 μm), length of the second-order branches (10.9 ± 1.8 μm), length of the dead-end branches (5.9 ± 0.7 μm), the number of intersection nodes per mm(3) (819.1 × 10(3) ± 180.7 × 10(3)), the number of dead-end branches per mm(3) (409.9 × 10(3) ± 95.6 × 10(3)), the length of the bile canalicular network per mm(3) (9.4 × 10(3) ± 0.7 × 10(3) mm) and the percentage of the bile canalicular volume with respect to the total liver volume (3.4 ± 0.005). A particular strength of our technique is that quantitative parameters of hepatocytes and bile canalicular as well as sinusoidal networks can be extracted from the same tissue block. Reconstructions and quantifications performed as described in the current protocols can be used for quantitative mathematical modelling of the underlying mechanisms. Furthermore, protocols are presented for both human and pig livers. The technique is also applicable for both vibratome blocks and conventional paraffin slices.

126 citations

Book ChapterDOI
01 Jan 2016
TL;DR: The Third Person Effect in Communication as mentioned in this paper is a well-known concept in Medienwirkung, e.g., the Third Person Effekt in Communication (FPE) is defined by W. Phillips Davison.
Abstract: Der Aufsatz „The Third-Person Effect in Communication“ von W. Phillips Davison erschien 1983 in der Zeitschrift Public Opinion Quarterly. In dem Aufsatz entwickelt Davison auf auserst anschauliche Weise die Idee des Third-Person-Effekts. Dabei erortert er unterschiedliche Deutungsweisen des Effekts, von denen sich eine schlieslich durchgesetzt hat. Sie besteht aus zwei Kernannahmen: 1. Menschen gehen davon aus, dass andere Menschen starker als sie selbst von Medien bzw. Medieninhalten beeinflusst werden. 2. Die Wahrnehmung starker Medieneinflusse auf andere kann zu einer Beeinflussung des Verhaltens von Menschen fuhren. Mehrere Grunde sprechen dafur, den Text als ein Schlusselwerk der Medienwirkungsforschung einzuordnen: Davison hat mit seinem Aufsatz einem theoretischen Ansatz, zu dem weiterhin intensiv geforscht wird, einen Namen gegeben. Die von ihm entwickelten Annahmen waren innovativ, auf vorhandene Belege aus der wissenschaftlichen Literatur konnte er kaum zuruckgreifen. Ausschlaggebend fur die Bedeutung des Textes ist zudem, dass die dort formulierten zentralen Annahmen zum Third-Person-Effekt bis heute gultig sind. Hervorzuheben ist auserdem, dass Davison in seinem Texte bereits Bezuge zwischen dem Third-Person-Effekt und anderen Wahrnehmungsphanomenen hergestellt und somit einer Verknupfung dieser Ansatze fruhzeitig den Boden bereitet hat.

126 citations

Journal ArticleDOI
TL;DR: In this article, the neutrino energy range 30-200 GeV was investigated and the results were in agreement with the expectations of the quark parton model and QCD.
Abstract: We present results on charged current inclusive neutrino and antineutrino scattering in the neutrino energy range 30–200 GeV. The results include a) total cross-sections; b)y distributions; c) structure functions; and d) scaling violations observed in the structure functions. The results, as well as their comparison with the results of electron and muon inclusive scattering, are in agreement with the expectations of the quark parton model and QCD.

126 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2904 moreInstitutions (211)
TL;DR: In this paper, a search for a Higgs boson produced via vector-boson fusion and decaying into invisible particles is presented, using 20.3 fb−1 of proton-proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC.
Abstract: A search for a Higgs boson produced via vector-boson fusion and decaying into invisible particles is presented, using 20.3 fb−1 of proton-proton collision data at a centre-of-mass energy of 8 TeV recorded by the ATLAS detector at the LHC. For a Higgs boson with a mass of 125 GeV, assuming the Standard Model production cross section, an upper bound of 0.28 is set on the branching fraction of H → invisible at 95% confidence level, where the expected upper limit is 0.31. The results are interpreted in models of Higgs-portal dark matter where the branching fraction limit is converted into upper bounds on the dark-matter-nucleon scattering cross section as a function of the dark-matter particle mass, and compared to results from the direct dark-matter detection experiments.

126 citations


Authors

Showing all 13240 results

NameH-indexPapersCitations
Hermann Kolanoski145127996152
Marc Besancon1431799106869
Kerstin Borras133134192173
Emmerich Kneringer129102180898
Achim Geiser129133184136
Valerio Vercesi12993779519
Jens Weingarten12889674667
Giuseppe Mornacchi12789475830
Kevin Kroeninger12683670010
Daniel Muenstermann12688570855
Reiner Klingenberg12673370069
Claus Gössling12677571975
Diane Cinca12682270126
Frank Meier12467764889
Daniel Dobos12467967434
Network Information
Related Institutions (5)
RWTH Aachen University
96.2K papers, 2.5M citations

93% related

University of Erlangen-Nuremberg
85.6K papers, 2.6M citations

92% related

Technische Universität München
123.4K papers, 4M citations

91% related

ETH Zurich
122.4K papers, 5.1M citations

90% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023131
2022306
20211,694
20201,773
20191,653
20181,579