scispace - formally typeset
Search or ask a question
Institution

Technical University of Dortmund

EducationDortmund, Nordrhein-Westfalen, Germany
About: Technical University of Dortmund is a education organization based out in Dortmund, Nordrhein-Westfalen, Germany. It is known for research contribution in the topics: Large Hadron Collider & Neutrino. The organization has 13028 authors who have published 27666 publications receiving 615557 citations. The organization is also known as: Dortmund University & University of Dortmund.


Papers
More filters
Proceedings ArticleDOI
09 Jun 2003
TL;DR: This paper presents the first average-case analysis proving an expected polynomial running time for an exact algorithm for the 0/1 knapsack problem, and confirms and explains practical studies showing that so-called strongly correlated instances are harder to solve than weakly correlated ones.
Abstract: In this paper, we present the first average-case analysis proving an expected polynomial running time for an exact algorithm for the 0/1 knapsack problem. In particular, we prove, for various input distributions, that the number of dominating solutions (i.e., Pareto-optimal knapsack fillings) to this problem is polynomially bounded in the number of available items. An algorithm by Nemhauser and Ullmann can enumerate these solutions very efficiently so that a polynomial upper bound on the number of dominating solutions implies an algorithm with expected polynomial running time.The random input model underlying our analysis is very general and not restricted to a particular input distribution. We assume adversarial weights and randomly drawn profits (or vice versa). Our analysis covers general probability distributions with finite mean, and, in its most general form, can even handle different probability distributions for the profits of different items. This feature enables us to study the effects of correlations between profits and weights. Our analysis confirms and explains practical studies showing that so-called strongly correlated instances are harder to solve than weakly correlated ones.

126 citations

Journal ArticleDOI
TL;DR: An MILP formulation to extend a continuous-time model with energy-awareness to optimize the daily production schedules and the electricity purchase including the load commitment problem and a bi-level heuristic algorithm is proposed to tackle instances of industrial size.

126 citations

Journal ArticleDOI
TL;DR: In this paper, the authors evaluate the possibility of producing low-cost, small-batch, polymer sheet components by means of single point incremental forming (SPIF) at room temperature.

126 citations

Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, Ovsat Abdinov4  +2898 moreInstitutions (215)
TL;DR: In this paper, measurements of W(+/-)Z production in pp collisions at a center-of-mass energy of 8 TeV were presented, where the gauge bosons were reconstructed using their leptonic decay modes into electrons and m...
Abstract: This paper presents measurements of W(+/-)Z production in pp collisions at a center-of-mass energy of 8 TeV. The gauge bosons are reconstructed using their leptonic decay modes into electrons and m ...

126 citations


Authors

Showing all 13240 results

NameH-indexPapersCitations
Hermann Kolanoski145127996152
Marc Besancon1431799106869
Kerstin Borras133134192173
Emmerich Kneringer129102180898
Achim Geiser129133184136
Valerio Vercesi12993779519
Jens Weingarten12889674667
Giuseppe Mornacchi12789475830
Kevin Kroeninger12683670010
Daniel Muenstermann12688570855
Reiner Klingenberg12673370069
Claus Gössling12677571975
Diane Cinca12682270126
Frank Meier12467764889
Daniel Dobos12467967434
Network Information
Related Institutions (5)
RWTH Aachen University
96.2K papers, 2.5M citations

93% related

University of Erlangen-Nuremberg
85.6K papers, 2.6M citations

92% related

Technische Universität München
123.4K papers, 4M citations

91% related

ETH Zurich
122.4K papers, 5.1M citations

90% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023131
2022306
20211,694
20201,773
20191,653
20181,579