scispace - formally typeset
Search or ask a question
Institution

Technical University of Dortmund

EducationDortmund, Nordrhein-Westfalen, Germany
About: Technical University of Dortmund is a education organization based out in Dortmund, Nordrhein-Westfalen, Germany. It is known for research contribution in the topics: Large Hadron Collider & Neutrino. The organization has 13028 authors who have published 27666 publications receiving 615557 citations. The organization is also known as: Dortmund University & University of Dortmund.


Papers
More filters
Proceedings ArticleDOI
27 Aug 2017
TL;DR: This work shows based on a comprehensive empirical evaluation that a heuristics-based nearest neighbor (kNN) scheme for sessions outperforms GRU4REC in the large majority of the tested configurations and datasets and ensures the scalability of the kNN method.
Abstract: Deep learning methods have led to substantial progress in various application fields of AI, and in recent years a number of proposals were made to improve recommender systems with artificial neural networks. For the problem of making session-based recommendations, i.e., for recommending the next item in an anonymous session, Hidasi et al.~recently investigated the application of recurrent neural networks with Gated Recurrent Units (GRU4REC). Assessing the true effectiveness of such novel approaches based only on what is reported in the literature is however difficult when no standard evaluation protocols are applied and when the strength of the baselines used in the performance comparison is not clear. In this work we show based on a comprehensive empirical evaluation that a heuristics-based nearest neighbor (kNN) scheme for sessions outperforms GRU4REC in the large majority of the tested configurations and datasets. Neighborhood sampling and efficient in-memory data structures ensure the scalability of the kNN method. The best results in the end were often achieved when we combine the kNN approach with GRU4REC, which shows that RNNs can leverage sequential signals in the data that cannot be detected by the co-occurrence-based kNN method.

376 citations

Journal ArticleDOI
Roel Aaij1, C. Abellán Beteta2, Bernardo Adeva3, Marco Adinolfi4  +761 moreInstitutions (64)
TL;DR: An angular analysis of the B0 → K*0(→ K+π−)μ+μ− decay is presented in this paper, where the angular observables and their correlations are reported in bins of q2, the invariant mass squared of the dimuon system.
Abstract: An angular analysis of the B0 → K*0(→ K+π−)μ+μ− decay is presented. The dataset corresponds to an integrated luminosity of 3.0 fb−1 of pp collision data collected at the LHCb experiment. The complete angular information from the decay is used to determine CP-averaged observables and CP asymmetries, taking account of possible contamination from decays with the K+π− system in an S-wave configuration. The angular observables and their correlations are reported in bins of q2, the invariant mass squared of the dimuon system. The observables are determined both from an unbinned maximum likelihood fit and by using the principal moments of the angular distribution. In addition, by fitting for q2-dependent decay amplitudes in the region 1.1 < q2 < 6.0 GeV2/c4, the zero-crossing points of several angular observables are computed. A global fit is performed to the complete set of CP-averaged observables obtained from the maximum likelihood fit. This fit indicates differences with predictions based on the Standard Model at the level of 3.4 standard deviations. These differences could be explained by contributions from physics beyond the Standard Model, or by an unexpectedly large hadronic effect that is not accounted for in the Standard Model predictions.[Figure not available: see fulltext.]

376 citations

Journal ArticleDOI
Roel Aaij, C. Abellan Beteta1, A. Adametz2, Bernardo Adeva3  +615 moreInstitutions (42)
TL;DR: In this paper, a search for the rare decays Bs->mu+mu- and B0->Mu+Mu- is performed using data collected in 2011 and 2012 with the LHCb experiment at the Large Hadron Collider.
Abstract: A search for the rare decays Bs->mu+mu- and B0->mu+mu- is performed using data collected in 2011 and 2012 with the LHCb experiment at the Large Hadron Collider. The data samples comprise 1.1 fb^-1 of proton-proton collisions at sqrt{s} = 8 TeV and 1.0 fb^-1 at sqrt{s}=7 TeV. We observe an excess of Bs -> mu+ mu- candidates with respect to the background expectation. The probability that the background could produce such an excess or larger is 5.3 x 10^-4 corresponding to a signal significance of 3.5 standard deviations. A maximum-likelihood fit gives a branching fraction of BR(Bs -> mu+ mu-) = (3.2^{+1.5}_{-1.2}) x 10^-9, where the statistical uncertainty is 95% of the total uncertainty. This result is in agreement with the Standard Model expectation. The observed number of B0 -> mu+ mu- candidates is consistent with the background expectation, giving an upper limit of BR(B0 -> mu+ mu-) < 9.4 x 10^-10 at 95% confidence level.

375 citations

Journal ArticleDOI
TL;DR: The quark and gluon distributions of the photon are determined in leading and higher order by imposing a vector-meson dominance (VMD) valencelike structure at a low resolution scale adopted from the pion.
Abstract: The quark and gluon distributions of the photon are determined in leading and higher order by imposing a vector-meson dominance (VMD) valencelike structure at a low resolution scale adopted from the pion. This leaves only one free parameter, not sufficiently constrained by VMD, to be fixed by experiment. Our predictions are in agreement with presently available data for ${F}_{2}^{\ensuremath{\gamma}}(x,{Q}^{2})$. Simple parametrizations of the resulting parton distributions are presented in the range ${10}^{\ensuremath{-}5}\ensuremath{\lesssim}xl1$, $0.3\ensuremath{\lesssim}{Q}^{2}\ensuremath{\lesssim}{10}^{6}$ ${\mathrm{GeV}}^{2}$ as obtained from the leading- and higher-order evolution equations.

375 citations

Journal ArticleDOI
Jelena Aleksić1, L. A. Antonelli2, P. Antoranz3, Michael Backes4  +156 moreInstitutions (22)
TL;DR: Very high energy (VHE) gamma-ray emission from the flat spectrum radio quasar (FSRQ) PKS 1222+21 (4C 21.432) was detected with the MAGIC Cherenkov telescopes during a short observation (similar to 0.5 hr) performed on 2010 June 17 as mentioned in this paper.
Abstract: Very high energy (VHE) gamma-ray emission from the flat spectrum radio quasar (FSRQ) PKS 1222+ 21 (4C 21.35, z = 0.432) was detected with the MAGIC Cherenkov telescopes during a short observation (similar to 0.5 hr) performed on 2010 June 17. The MAGIC detection coincides with high-energy MeV/ GeV gamma-ray activity measured by the Large Area Telescope (LAT) on board the Fermi satellite. The VHE spectrum measured by MAGIC extends from about 70 GeV up to at least 400 GeV and can be well described by a power-law dN/dE proportional to E-Gamma with a photon index Gamma = 3.75 +/- 0.27(stat) +/- 0.2(syst). The averaged integral flux above 100 GeV is (4.6 +/- 0.5) x 10(-10) cm(-2) s(-1) (similar to 1 Crab Nebula flux). The VHE flux measured by MAGIC varies significantly within the 30 minute exposure implying a flux doubling time of about 10 minutes. The VHE and MeV/GeV spectra, corrected for the absorption by the extragalactic background light (EBL), can be described by a single power law with photon index 2.72 +/- 0.34 between 3 GeV and 400 GeV, and is consistent with emission belonging to a single component in the jet. The absence of a spectral cutoff constrains the gamma-ray emission region to lie outside the broad-line region, which would otherwise absorb the VHE gamma-rays. Together with the detected fast variability, this challenges present emission models from jets in FSRQs. Moreover, the combined Fermi/LAT and MAGIC spectral data yield constraints on the density of the EBL in the UV-optical to near-infrared range that are compatible with recent models.

371 citations


Authors

Showing all 13240 results

NameH-indexPapersCitations
Hermann Kolanoski145127996152
Marc Besancon1431799106869
Kerstin Borras133134192173
Emmerich Kneringer129102180898
Achim Geiser129133184136
Valerio Vercesi12993779519
Jens Weingarten12889674667
Giuseppe Mornacchi12789475830
Kevin Kroeninger12683670010
Daniel Muenstermann12688570855
Reiner Klingenberg12673370069
Claus Gössling12677571975
Diane Cinca12682270126
Frank Meier12467764889
Daniel Dobos12467967434
Network Information
Related Institutions (5)
RWTH Aachen University
96.2K papers, 2.5M citations

93% related

University of Erlangen-Nuremberg
85.6K papers, 2.6M citations

92% related

Technische Universität München
123.4K papers, 4M citations

91% related

ETH Zurich
122.4K papers, 5.1M citations

90% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023131
2022306
20211,694
20201,773
20191,653
20181,579