scispace - formally typeset
Search or ask a question
Institution

Technical University of Dortmund

EducationDortmund, Nordrhein-Westfalen, Germany
About: Technical University of Dortmund is a education organization based out in Dortmund, Nordrhein-Westfalen, Germany. It is known for research contribution in the topics: Context (language use) & Large Hadron Collider. The organization has 13028 authors who have published 27666 publications receiving 615557 citations. The organization is also known as: Dortmund University & University of Dortmund.


Papers
More filters
Journal ArticleDOI
Georges Aad1, Brad Abbott2, Jalal Abdallah3, S. Abdel Khalek4  +2870 moreInstitutions (169)
TL;DR: The performance of the ATLAS muon reconstruction during the LHC run withpp collisions at s=7–8 TeV in 2011–2012 is presented, focusing mainly on data collected in 2012.
Abstract: This paper presents the performance of the ATLAS muon reconstruction during the LHC run with pp collisions at root s = 7-8 TeV in 2011-2012, focusing mainly on data collected in 2012. Measurements ...

305 citations

Journal ArticleDOI
TL;DR: Molecular imprinted polymers have routinely been used, as robust and effective synthetic molecular receptors, in a diverse range of technologies but it is perhaps in the area of drug delivery, in particular 'intelligent drug release' and 'magic bullet' drug targeting, that significant future opportunities lie.

304 citations

Journal ArticleDOI
TL;DR: This Fundamentals article first synthesize research on digital platforms and digital platform ecosystems to provide a definition that integrates both concepts, and uses this definition to explain how differentdigital platform ecosystems vary according to three core building blocks.
Abstract: Digital platforms are an omnipresent phenomenon that challenges incumbents by changing how we consume and provide digital products and services. Whereas traditional firms create value within the boundaries of a company or a supply chain, digital platforms utilize an ecosystem of autonomous agents to co-create value. Scholars from various disciplines, such as economics, technology management, and information systems have taken different perspectives on digital platform ecosystems. In this Fundamentals article, we first synthesize research on digital platforms and digital platform ecosystems to provide a definition that integrates both concepts. Second, we use this definition to explain how different digital platform ecosystems vary according to three core building blocks: (1) platform ownership, (2) value-creating mechanisms, and (3) complementor autonomy. We conclude by giving an outlook on four overarching research areas that connect the building blocks: (1) technical properties and value creation; (2) complementor interaction with the ecosystem; (3) value capture; and (4) the make-or-join decision in digital platform ecosystems.

304 citations

Journal ArticleDOI
Georges Aad1, T. Abajyan2, Brad Abbott3, Jalal Abdallah4  +2885 moreInstitutions (169)
TL;DR: In this article, the electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton-proton collision data collected in 2011 at TeV and corresponding to an integrated luminosity of 4.7 fb.
Abstract: Many of the interesting physics processes to be measured at the LHC have a signature involving one or more isolated electrons. The electron reconstruction and identification efficiencies of the ATLAS detector at the LHC have been evaluated using proton-proton collision data collected in 2011 at TeV and corresponding to an integrated luminosity of 4.7 fb. Tag-and-probe methods using events with leptonic decays of and bosons and mesons are employed to benchmark these performance parameters. The combination of all measurements results in identification efficiencies determined with an accuracy at the few per mil level for electron transverse energy greater than 30 GeV.

302 citations

Proceedings ArticleDOI
12 Jul 2011
TL;DR: Interestingly, very few features are needed to separate the BBOB problem groups and also for relating a problem to high-level, expert designed features, paving the way for automatic algorithm selection.
Abstract: Exploratory Landscape Analysis subsumes a number of techniques employed to obtain knowledge about the properties of an unknown optimization problem, especially insofar as these properties are important for the performance of optimization algorithms. Where in a first attempt, one could rely on high-level features designed by experts, we approach the problem from a different angle here, namely by using relatively cheap low-level computer generated features. Interestingly, very few features are needed to separate the BBOB problem groups and also for relating a problem to high-level, expert designed features, paving the way for automatic algorithm selection.

300 citations


Authors

Showing all 13240 results

NameH-indexPapersCitations
Hermann Kolanoski145127996152
Marc Besancon1431799106869
Kerstin Borras133134192173
Emmerich Kneringer129102180898
Achim Geiser129133184136
Valerio Vercesi12993779519
Jens Weingarten12889674667
Giuseppe Mornacchi12789475830
Kevin Kroeninger12683670010
Daniel Muenstermann12688570855
Reiner Klingenberg12673370069
Claus Gössling12677571975
Diane Cinca12682270126
Frank Meier12467764889
Daniel Dobos12467967434
Network Information
Related Institutions (5)
RWTH Aachen University
96.2K papers, 2.5M citations

93% related

University of Erlangen-Nuremberg
85.6K papers, 2.6M citations

92% related

Technische Universität München
123.4K papers, 4M citations

91% related

ETH Zurich
122.4K papers, 5.1M citations

90% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023131
2022306
20211,694
20201,773
20191,653
20181,579