scispace - formally typeset
Search or ask a question
Institution

Technion – Israel Institute of Technology

EducationHaifa, Israel
About: Technion – Israel Institute of Technology is a education organization based out in Haifa, Israel. It is known for research contribution in the topics: Population & Nonlinear system. The organization has 31714 authors who have published 79377 publications receiving 2603976 citations. The organization is also known as: Technion Israel Institute of Technology & Ṭekhniyon, Makhon ṭekhnologi le-Yiśraʼel.


Papers
More filters
Journal ArticleDOI
TL;DR: The results indicate that a "decomposed" CTW (a variant of the CTW algorithm) and PPM outperform all other algorithms in sequence prediction tasks and a different algorithm, which is a modification of the Lempel-Ziv compression algorithm, significantly outperforms all algorithms on the protein classification problems.
Abstract: This paper is concerned with algorithms for prediction of discrete sequences over a finite alphabet, using variable order Markov models. The class of such algorithms is large and in principle includes any lossless compression algorithm. We focus on six prominent prediction algorithms, including Context Tree Weighting (CTW), Prediction by Partial Match (PPM) and Probabilistic Suffix Trees (PSTs). We discuss the properties of these algorithms and compare their performance using real life sequences from three domains: proteins, English text and music pieces. The comparison is made with respect to prediction quality as measured by the average log-loss. We also compare classification algorithms based on these predictors with respect to a number of large protein classification tasks. Our results indicate that a "decomposed" CTW (a variant of the CTW algorithm) and PPM outperform all other algorithms in sequence prediction tasks. Somewhat surprisingly, a different algorithm, which is a modification of the Lempel-Ziv compression algorithm, significantly outperforms all algorithms on the protein classification problems.

428 citations

Journal ArticleDOI
TL;DR: The hypothesis that ultrasonically induced bilayer membrane motion, which does not require preexistence of air voids in the tissue, may account for a variety of bioeffects and could elucidate mechanisms of ultrasound interaction with biological tissue that are currently not fully understood is supported.
Abstract: The purpose of this study was to develop a unified model capable of explaining the mechanisms of interaction of ultrasound and biological tissue at both the diagnostic nonthermal, noncavitational ( 100 mW·cm−2) spatial peak temporal average intensity levels. The cellular-level model (termed “bilayer sonophore”) combines the physics of bubble dynamics with cell biomechanics to determine the dynamic behavior of the two lipid bilayer membrane leaflets. The existence of such a unified model could potentially pave the way to a number of controlled ultrasound-assisted applications, including CNS modulation and blood–brain barrier permeabilization. The model predicts that the cellular membrane is intrinsically capable of absorbing mechanical energy from the ultrasound field and transforming it into expansions and contractions of the intramembrane space. It further predicts that the maximum area strain is proportional to the acoustic pressure amplitude and inversely proportional to the square root of the frequency () and is intensified by proximity to free surfaces, the presence of nearby microbubbles in free medium, and the flexibility of the surrounding tissue. Model predictions were experimentally supported using transmission electron microscopy (TEM) of multilayered live-cell goldfish epidermis exposed in vivo to continuous wave (CW) ultrasound at cavitational (1 MHz) and noncavitational (3 MHz) conditions. Our results support the hypothesis that ultrasonically induced bilayer membrane motion, which does not require preexistence of air voids in the tissue, may account for a variety of bioeffects and could elucidate mechanisms of ultrasound interaction with biological tissue that are currently not fully understood.

427 citations

Journal ArticleDOI
TL;DR: A proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell–derived cardiomyocytes under defined, serum-free conditions is provided.
Abstract: Background:Advancing structural and functional maturation of stem cell–derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, w...

427 citations

Journal ArticleDOI
TL;DR: This work proposes a prototypical Split Inverse Problem (SIP) and a new variational problem, called the Split Variational Inequality problem (SVIP), which is a SIP that entails finding a solution of one inverse problem under a given bounded linear transformation.
Abstract: We propose a prototypical Split Inverse Problem (SIP) and a new variational problem, called the Split Variational Inequality Problem (SVIP), which is a SIP. It entails finding a solution of one inverse problem (e.g., a Variational Inequality Problem (VIP)), the image of which under a given bounded linear transformation is a solution of another inverse problem such as a VIP. We construct iterative algorithms that solve such problems, under reasonable conditions, in Hilbert space and then discuss special cases, some of which are new even in Euclidean space.

427 citations

Journal ArticleDOI
09 Sep 2016-Science
TL;DR: The MEGA-plate provides a versatile platform for studying microbial adaption and directly visualizing evolutionary dynamics, and it is found that evolution is not always led by the most resistant mutants; highly resistant mutants may be trapped behind more sensitive lineages.
Abstract: A key aspect of bacterial survival is the ability to evolve while migrating across spatially varying environmental challenges. Laboratory experiments, however, often study evolution in well-mixed systems. Here, we introduce an experimental device, the microbial evolution and growth arena (MEGA)–plate, in which bacteria spread and evolved on a large antibiotic landscape (120 × 60 centimeters) that allowed visual observation of mutation and selection in a migrating bacterial front. While resistance increased consistently, multiple coexisting lineages diversified both phenotypically and genotypically. Analyzing mutants at and behind the propagating front, we found that evolution is not always led by the most resistant mutants; highly resistant mutants may be trapped behind more sensitive lineages. The MEGA-plate provides a versatile platform for studying microbial adaption and directly visualizing evolutionary dynamics.

426 citations


Authors

Showing all 31937 results

NameH-indexPapersCitations
Robert Langer2812324326306
Nicholas G. Martin1921770161952
Tobin J. Marks1591621111604
Grant W. Montgomery157926108118
David Eisenberg156697112460
David J. Mooney15669594172
Dirk Inzé14964774468
Jerrold M. Olefsky14359577356
Joseph J.Y. Sung142124092035
Deborah Estrin135562106177
Bruce Yabsley133119184889
Jerry W. Shay13363974774
Richard N. Bergman13047791718
Shlomit Tarem129130686919
Allen Mincer129104080059
Network Information
Related Institutions (5)
Imperial College London
209.1K papers, 9.3M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

92% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Stanford University
320.3K papers, 21.8M citations

92% related

University of Toronto
294.9K papers, 13.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022390
20213,397
20203,526
20193,273
20183,131