scispace - formally typeset
Search or ask a question
Institution

Technion – Israel Institute of Technology

EducationHaifa, Israel
About: Technion – Israel Institute of Technology is a education organization based out in Haifa, Israel. It is known for research contribution in the topics: Population & Upper and lower bounds. The organization has 31714 authors who have published 79377 publications receiving 2603976 citations. The organization is also known as: Technion Israel Institute of Technology & Ṭekhniyon, Makhon ṭekhnologi le-Yiśraʼel.


Papers
More filters
Proceedings ArticleDOI
11 Jun 2007
TL;DR: A general construction of a zero-knowledge proof for an NP relation R(x,w) which only makes a black-box use of a secure protocol for a related multi-partyfunctionality f, which improves over the O(ks) complexity of the best previous protocols.
Abstract: We present a general construction of a zero-knowledge proof for an NP relation R(x,w) which only makes a black-box use of a secure protocol for a related multi-partyfunctionality f. The latter protocol is only required to be secure against a small number of "honest but curious" players. As an application, we can translate previous results on the efficiency of secure multiparty computation to the domain of zero-knowledge, improving over previous constructions of efficient zero-knowledge proofs. In particular, if verifying R on a witness of length m can be done by a circuit C of size s, and assuming one-way functions exist, we get the following types of zero-knowledge proof protocols.Approaching the witness length. If C has constant depth over ∧,∨,⊕, - gates of unbounded fan-in, we get a zero-knowledge protocol with communication complexity m·poly(k)·polylog(s), where k is a security parameter. Such a protocol can be implemented in either the standard interactive model or, following a trusted setup, in a non-interactive model."Constant-rate" zero-knowledge. For an arbitrary circuit C of size s and a bounded fan-in, we geta zero-knowledge protocol with communication complexity O(s)+poly(k). Thus, for large circuits, the ratio between the communication complexity and the circuit size approaches a constant. This improves over the O(ks) complexity of the best previous protocols.

351 citations

Journal ArticleDOI
TL;DR: In this article, the authors stress the fact that quantum theory does not need an interpretation other than being an algorithm for computing probabilities associated with macroscopic phenomena and measurements, and the wave function is not objective entity, it only gives the evolution of our probabilities for the outcomes potential experiments.
Abstract: Purpose of this article is to stress the fact that Quantum Theory does not need an interpretation other than being an algorithm for computing probabilities associated with macroscopic phenomena and measurements. It does not ''describ'' reality, and the wave function is not objective entity, it only gives the evolution of our probabilities for the outcomes potential experiments. (AIP) (c)

350 citations

Journal ArticleDOI
TL;DR: The paper considers random matrices with independent subgaussian columns and provides a new elementary proof of the Uniform Uncertainty Principle for such matrices and combines a simple measure concentration and a covering argument, which are standard tools of high-dimensional convexity.
Abstract: The paper considers random matrices with independent subgaussian columns and provides a new elementary proof of the Uniform Uncertainty Principle for such matrices. The Principle was introduced by Candes, Romberg and Tao in 2004; for subgaussian random matrices it was carlier proved by the present authors, as a consequence of a general result based on a generic chaining method of Talagrand. The present proof combines a simple measure concentration and a covering argument, which are standard tools of high-dimensional convexity.

350 citations

Journal ArticleDOI
TL;DR: Of special interest is the oxidative modification of LDL which was demonstrated to occur in vivo, which involves cellular lipid peroxidation and requires the binding of LDL to its receptor on macrophages.

350 citations

Journal ArticleDOI
02 May 2001
TL;DR: An algorithm that covers every point of the approximate area for tasks such as floor cleaning, lawn mowing, and field demining is presented, and their effectiveness in cases where the tool size is significantly smaller than the work-area characteristic dimension is demonstrated.
Abstract: The paper considers the problem of covering a continuous planar area by a square-shaped tool attached to a mobile robot. Using a tool-based approximation of the work-area, we present an algorithm that covers every point of the approximate area. The algorithm, called spanning tree covering (STC), subdivides the work-area into disjoint cells corresponding to the square-shaped tool, then follows a spanning tree of the graph induced by the cells, while covering every point precisely once. We present and analyze three versions of the STC algorithm. The first version is an off-line algorithm that computes an optimal covering path in linear time O(N), where N is the number of cells comprising the approximate area. The second version is an online or sensor based algorithm, that completes an optimal covering path in time O(N), but requires O(N) memory for its implementation. The third version of STC is "ant"-like, where the robot may leave pheromone-like markers during the coverage process. The ant-like STC algorithm runs in time O(N) and requires only O(1) memory. We present simulation results of the three STC algorithms, demonstrating their effectiveness in cases where the tool size is significantly smaller than the work-area characteristic dimension.

350 citations


Authors

Showing all 31937 results

NameH-indexPapersCitations
Robert Langer2812324326306
Nicholas G. Martin1921770161952
Tobin J. Marks1591621111604
Grant W. Montgomery157926108118
David Eisenberg156697112460
David J. Mooney15669594172
Dirk Inzé14964774468
Jerrold M. Olefsky14359577356
Joseph J.Y. Sung142124092035
Deborah Estrin135562106177
Bruce Yabsley133119184889
Jerry W. Shay13363974774
Richard N. Bergman13047791718
Shlomit Tarem129130686919
Allen Mincer129104080059
Network Information
Related Institutions (5)
Imperial College London
209.1K papers, 9.3M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

92% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Stanford University
320.3K papers, 21.8M citations

92% related

University of Toronto
294.9K papers, 13.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022390
20213,397
20203,526
20193,273
20183,131