scispace - formally typeset
Search or ask a question
Institution

Technion – Israel Institute of Technology

EducationHaifa, Israel
About: Technion – Israel Institute of Technology is a education organization based out in Haifa, Israel. It is known for research contribution in the topics: Population & Upper and lower bounds. The organization has 31714 authors who have published 79377 publications receiving 2603976 citations. The organization is also known as: Technion Israel Institute of Technology & Ṭekhniyon, Makhon ṭekhnologi le-Yiśraʼel.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors explain the cause for photovoltage in nanocrystalline, mesoporous dye-sensitized solar cells, in terms of the separation, recombination, and transport of electronic charge as well as electron energetics.
Abstract: We explain the cause for the photocurrent and photovoltage in nanocrystalline, mesoporous dye-sensitized solar cells, in terms of the separation, recombination, and transport of electronic charge as well as in terms of electron energetics. On the basis of available experimental data, we confirm that the basic cause for the photovoltage is the change in the electron concentration in the nanocrystalline electron conductor that results from photoinduced charge injection from the dye. The maximum photovoltage is given by the difference in electron energies between the redox level and the bottom of the electron conductor's conduction band, rather than by any difference in electrical potential in the cell, in the dark. Charge separation occurs because of the energetic and entropic driving forces that exist at the dye/electron conductor interface, with charge transport aided by such driving forces at the electron conductor/contact interface. The mesoporosity and nanocrystallinity of the semiconductor are importa...

693 citations

Journal ArticleDOI
TL;DR: The periphyton treatment technique is applicable to extensive systems, and the proteinaceous bio-flocs technology can be used in extensive as well as in intensive systems, which provide an inexpensive feed source and a higher efficiency of nutrient conversion of feed.

693 citations

Journal ArticleDOI
01 Aug 2000-Brain
TL;DR: The way in which cutaneous allodynia develops by measuring the pain thresholds in the head and forearms bilaterally at several time points during a migraine attack in a 42-year-old male is studied and calls for early use of anti-migraine drugs that target peripheral nociceptors, before the development of central sensitization.
Abstract: Recently, we showed that most migraine patients exhibit cutaneous allodynia inside and outside their pain-referred areas when examined during a fully developed migraine attack. In this report, we studied the way in which cutaneous allodynia develops by measuring the pain thresholds in the head and forearms bilaterally at several time points during a migraine attack in a 42-year-old male. Prior to the headache, he experienced visual, sensory, motor and speech aura. During the headache, he experienced photo-, phono- and odour-phobia, nausea and vomiting, worsening of the headache by coughing or moving his head, and cutaneous pain when shaving, combing his hair or touching his scalp. Comparisons between his pain thresholds in the absence of migraine and at 1, 2 and 4 h after the onset of migraine revealed the following. (i) After 1 h, mechanical and cold allodynia started to develop in the ipsilateral head but not in any other site. (ii) After 2 h, this allodynia increased on the ipsilateral head and spread to the contralateral head and ipsilateral forearm. (iii) After 4 h, heat allodynia was also detected while mechanical and cold allodynia continued to increase. These clinical observations suggest the following sequence of events along the trigeminovascular pain pathway of this patient. (i) A few minutes after the initial activation of his peripheral nociceptors, they became sensitized; this sensitization can mediate the symptoms of intracranial hypersensitivity. (ii) The barrage of impulses that came from the peripheral nociceptors activated second-order neurons and initiated their sensitization; this sensitization can mediate the development of cutaneous allodynia on the ipsilateral head. (iii) The barrage of impulses that came from the sensitized second-order neurons activated and eventually sensitized third-order neurons; this sensitization can mediate the development of cutaneous allodynia on the contralateral head and ipsilateral forearm at the 2-h point, over 1 h after the appearance of allodynia on the ipsilateral head. This interpretation calls for an early use of anti-migraine drugs that target peripheral nociceptors, before the development of central sensitization. If central sensitization develops, the therapeutic rationale is to suppress it. Because currently available drugs that aim to suppress central sensitization are ineffective, this study stresses the need to develop them for the treatment of migraine.

692 citations

Journal ArticleDOI
TL;DR: It is shown how to efficiently construct a small probability space on n binary random variables such that for every subset, its parity is either zero or one with “almost” equal probability.
Abstract: It is shown how to efficiently construct a small probability space on n binary random variables such that for every subset, its parity is either zero or one with “almost” equal probability. They are called $\epsilon $-biased random variables. The number of random bits needed to generate the random variables is $O(\log n + \log \frac{1}{\epsilon })$. Thus, if $\epsilon $ is polynomially small, then the size of the sample space is also polynomial. Random variables that are $\epsilon $-biased can be used to construct “almost” k-wise independent random variables where $\epsilon $ is a function of k.These probability spaces have various applications: l. Derandomization of algorithms: Many randomized algorithms that require only k-wise independence of their random bits (where k is bounded by $O(\log n)$), can be derandomized by using $\epsilon $-biased random variables. 2. Reducing the number of random bits required by certain randomized algorithms, e.g., verification of matrix multiplication. 3. Exhaustive tes...

690 citations

Proceedings ArticleDOI
01 Jul 2003
TL;DR: A novel hierarchical mesh decomposition algorithm that computes a decomposition into the meaningful components of a given mesh, which generally refers to segmentation at regions of deep concavities and the utility of the algorithm in control-skeleton extraction is demonstrated.
Abstract: Cutting up a complex object into simpler sub-objects is a fundamental problem in various disciplines. In image processing, images are segmented while in computational geometry, solid polyhedra are decomposed. In recent years, in computer graphics, polygonal meshes are decomposed into sub-meshes. In this paper we propose a novel hierarchical mesh decomposition algorithm. Our algorithm computes a decomposition into the meaningful components of a given mesh, which generally refers to segmentation at regions of deep concavities. The algorithm also avoids over-segmentation and jaggy boundaries between the components. Finally, we demonstrate the utility of the algorithm in control-skeleton extraction.

688 citations


Authors

Showing all 31937 results

NameH-indexPapersCitations
Robert Langer2812324326306
Nicholas G. Martin1921770161952
Tobin J. Marks1591621111604
Grant W. Montgomery157926108118
David Eisenberg156697112460
David J. Mooney15669594172
Dirk Inzé14964774468
Jerrold M. Olefsky14359577356
Joseph J.Y. Sung142124092035
Deborah Estrin135562106177
Bruce Yabsley133119184889
Jerry W. Shay13363974774
Richard N. Bergman13047791718
Shlomit Tarem129130686919
Allen Mincer129104080059
Network Information
Related Institutions (5)
Imperial College London
209.1K papers, 9.3M citations

93% related

Massachusetts Institute of Technology
268K papers, 18.2M citations

92% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

92% related

Stanford University
320.3K papers, 21.8M citations

92% related

University of Toronto
294.9K papers, 13.5M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023147
2022390
20213,397
20203,526
20193,273
20183,131