scispace - formally typeset
Search or ask a question
Institution

Technische Universität Darmstadt

EducationDarmstadt, Germany
About: Technische Universität Darmstadt is a education organization based out in Darmstadt, Germany. It is known for research contribution in the topics: Neutron & Finite element method. The organization has 17316 authors who have published 40619 publications receiving 937916 citations. The organization is also known as: Darmstadt University of Technology & University of Darmstadt.


Papers
More filters
Journal ArticleDOI
TL;DR: A detailed study of the transferability over different thermodynamic states of a coarse-grained (CG) force field developed using the iterative Boltzmann inversion method and finds that the polymer chain length does not affect the transferable of the force field and is attributed mainly to the finer model used in describing the polyamide-6,6 than the polystyrene.
Abstract: A key question for all coarse-graining methodologies is the degree of transferability of the resulting force field between various systems and thermodynamic conditions. Here we present a detailed study of the transferability over different thermodynamic states of a coarse-grained (CG) force field developed using the iterative Boltzmann inversion method. The force field is optimized against distribution functions obtained from atomistic simulations. We analyze the polymer case by investigating the bulk of polystyrene and polyamide-6,6 whose coarse-grained models differ in the chain length and in the number of atoms lumped in one bead. The effect of temperature and pressure on static, dynamic, and thermodynamic properties is tested by comparing systematically the coarse-grain results with the atomistic ones. We find that the CG model describing the polystyrene is transferable only in a narrow range of temperature and it fails in describing the change of the bulk density when temperature is 80 K lower than the optimization one. Moreover the calculation of the self-diffusion coefficient shows that the CG model is characterized by a faster dynamics than the atomistic one and that it overestimates the isothermal compressibility. On the contrary, the polyamide-6,6 CG model turns out to be fully transferable between different thermodynamic conditions. The transferability is checked by changing either the temperature or the pressure of the simulation. We find that, in this case, the CG model is able to follow all the intra- and interstructural rearrangements caused by the temperature changes. In addition, while at low temperature the difference between the CG and atomistic dynamics is remarkable due to the presence of hydrogen bonds in the atomistic systems, for high temperatures, the speedup of the CG dynamics is strongly reduced, leading to a CG diffusion coefficient only six times bigger than the atomistic one. Moreover, the isothermal compressibility calculated at different temperatures agrees very well with the experimental one. We find that the polymer chain length does not affect the transferability of the force field and we attribute such transferability mainly to the finer model used in describing the polyamide-6,6 than the polystyrene.

198 citations

Journal ArticleDOI
TL;DR: In this paper, the interface layer formation between LiPON and metallic lithium using an in-situ X-ray photoemission spectroscopy (XPS) surface science approach was studied.

197 citations

Book ChapterDOI
12 Feb 2002
TL;DR: This paper proposes a fast elliptic curve multiplication algorithm applicable for any types of curves over finite fields Fp (p a prime), together with criteria which make the algorithm resistant against the side channel attacks (SCA).
Abstract: This paper proposes a fast elliptic curve multiplication algorithm applicable for any types of curves over finite fields Fp (p a prime), based on [Mon87], together with criteria which make our algorithm resistant against the side channel attacks (SCA). The algorithm improves both on an addition chain and an addition formula in the scalar multiplication. Our addition chain requires no table look-up (or a very small number of pre-computed points) and a prominent property is that it can be implemented in parallel. The computing time for n-bit scalar multiplication is one ECDBL + (n - 1) ECADDs in the parallel case and (n - 1) ECDBLs + (n - 1) ECADDs in the single case. We also propose faster addition formulas which only use the x-coordinates of the points. By combination of our addition chain and addition formulas, we establish a faster scalar multiplication resistant against the SCA in both single and parallel computation. The improvement of our scalar multiplications over the previous method is about 37% for two processors and 5.7% for a single processor. Our scalar multiplication is suitable for the implementation on smart cards.

197 citations

Journal ArticleDOI
TL;DR: It is proposed that the specific function of each of these genes in endoderm and mesoderm formation evolved from the regulation of basic cellular features, such as cell adhesion, cell motility, cytoskeleton and cell cycle.
Abstract: Germ layers are defined as cell layers that arise during early animal development, mostly during gastrulation, and that give rise to all tissues and organs in adults. The evolutionary origin of the inner germ layers, endoderm and mesoderm, and their relationship have been a matter of debate for decades. In this review we summarize the major modes of endoderm and mesoderm formation found in Metazoa and possible evolutionary scenarios to reconstruct the ancestral state. In the second part, we address the question whether endoderm as well as mesoderm are homologous among Bilateria. In this regard, we propose that the comparative analysis of some crucial transcription factors involved in the early specification and differentiation of these germ layers might provide cues for the level of homology. We focus on four classes of genes: the Zn-finger gene GATA 4-6, the bHLH gene twist, the Kruppel-like Zn-finger gene snail and the T-box gene brachyury. The role of each of these genes in mesendoderm formation is summarized and we propose that the specific function of each of these genes in endoderm and mesoderm formation evolved from the regulation of basic cellular features, such as cell adhesion, cell motility, cytoskeleton and cell cycle.

197 citations

Journal ArticleDOI
TL;DR: A review of the densification mechanisms and the microstructural development for transparent spinel made by free sintering and by hot pressing is given in this article, where LiF is shown to have multiple behaviors: it initially wets spinel and forms a liquid phase at relatively low temperatures, which affects early-stage densification and also grain growth.
Abstract: A review of the densification mechanisms and the microstructural development for transparent spinel made by free sintering and by hot pressing is given. The paper is divided into two main parts. The first part considers spinel without any sintering additives because there still is some controversy concerning the role of cation stoichiometry on sintering and grain growth. The second part discusses the role of the classic sintering aid, LiF, in processing transparent spinel. LiF is shown to have multiple behaviors: (1) it initially wets spinel and forms a liquid phase at relatively low temperatures, which affects early-stage densification and also grain growth; (2) upon cooling from intermediate temperatures, or even from higher temperatures if microstructure evolution (e.g., formation of closed porosity) prevents volatization, the LiF-containing liquid dewets and resides in isolated pockets; (3) LiF alters the cation stoichiometry, thereby enhancing diffusion via an increase in the concentration of oxygen vacancies; this affects both the densification rate and grain growth; and (4) it reacts with impurities in the system, thereby acting as a cleanser. For the production of transparent spinel, it is critical that LiF or associated reaction products not be retained as a secondary phase.

196 citations


Authors

Showing all 17627 results

NameH-indexPapersCitations
Yang Gao1682047146301
Herbert A. Simon157745194597
Stephen Boyd138822151205
Jun Chen136185677368
Harold A. Mooney135450100404
Bernt Schiele13056870032
Sascha Mehlhase12685870601
Yuri S. Kivshar126184579415
Michael Wagner12435154251
Wolf Singer12458072591
Tasawar Hayat116236484041
Edouard Boos11675764488
Martin Knapp106106748518
T. Kuhl10176140812
Peter Braun-Munzinger10052734108
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023135
2022624
20212,462
20202,585
20192,609
20182,493