scispace - formally typeset
Search or ask a question
Institution

Technische Universität Darmstadt

EducationDarmstadt, Germany
About: Technische Universität Darmstadt is a education organization based out in Darmstadt, Germany. It is known for research contribution in the topics: Neutron & Finite element method. The organization has 17316 authors who have published 40619 publications receiving 937916 citations. The organization is also known as: Darmstadt University of Technology & University of Darmstadt.


Papers
More filters
Journal ArticleDOI
TL;DR: Direct morphological evidence is provided that parvalbumin-containing GABAergic neurons in layer 2/3 of the cat visual cortex form dense and far-ranging networks through dendritic gap junctions that supports the precise synchronization of neuronal populations with differing feature preferences thereby providing a temporal frame for the generation of distributed representations.
Abstract: Gap junctions are common between cortical GABAergic interneurons but little is known about their quantitative distribution along dendritic profiles. Here, we provide direct morphological evidence that parvalbumin-containing GABAergic neurons in layer 2/3 of the cat visual cortex form dense and far-ranging networks through dendritic gap junctions. Gap junction-coupled networks of parvalbumin neurons were visualized using connexin36 immunohistochemistry and confocal laser-scanning microscopy (CLSM). The direct correspondence of connexin36-immunopositve puncta and gap junctions was confirmed by examining the same structures in both CLSM and electron microscopy. Single parvalbumin neurons with large somata (> or =200 microm2) formed 60.3 +/- 12.2 (mean +/- SD) gap junctions with other cells whereby these contacts were not restricted to proximal dendrites but occurred at distances of up to 380 microm from the soma. In a Sholl analysis of large-type parvalbumin neurons, 21.9 +/- 7.9 gap junctions were within 50 microm of the soma, 21.7 +/- 7.6 gap junctions in a segment between 50 and 100 microm, 11.2 +/- 4.7 junctions between 100 and 150 microm, and 5.6 +/- 3.6 junctions were in more distal segments. Serially interconnected neurons could be traced laterally in a boundless manner through multiple gap junctions. Comparison to the orientation-preference columns revealed that parvalbumin-immunoreactive cells distribute randomly whereby their large dendritic fields overlap considerably and cover different orientation columns. It is proposed that this dense and homogeneous electrical coupling of interneurons supports the precise synchronization of neuronal populations with differing feature preferences thereby providing a temporal frame for the generation of distributed representations.

187 citations

Book ChapterDOI
29 Nov 2011
TL;DR: The first provably secure and practical hash-based signature scheme with minimal security requirements is XMSS as discussed by the authors, which reduces the signature size to less than 25% compared to the best known hash based signature scheme.
Abstract: We present the hash-based signature scheme XMSS. It is the first provably (forward) secure and practical signature scheme with minimal security requirements: a pseudorandom and a second preimage resistant (hash) function family. Its signature size is reduced to less than 25% compared to the best provably secure hash based signature scheme.

187 citations

Proceedings ArticleDOI
01 Feb 2015
TL;DR: This paper conducts a security analysis of a recently proposed fine-grained ASLR scheme and presents a new and hybrid defense approach, dubbed Isomeron, that combines code randomization with execution-path randomization to mitigate conventional ROP and JIT-ROP attacks.
Abstract: Until recently, it was widely believed that code randomization (such as fine-grained ASLR) can effectively mitigate code reuse attacks. However, a recent attack strategy, dubbed just-in-time return oriented programming (JIT-ROP), circumvents code randomization by disclosing the (randomized) content of many memory pages at runtime. In order to remedy this situation, new and improved code randomization defenses have been proposed. The contribution of this paper is twofold: first, we conduct a security analysis of a recently proposed fine-grained ASLR scheme that aims at mitigating JIT-ROP based on hiding direct code references in branch instructions. In particular, we demonstrate its weaknesses by constructing a novel JIT-ROP attack that is solely based on exploiting code references residing on the stack and heap. Our attack stresses that designing code randomization schemes resilient to memory disclosure is highly challenging. Second, we present a new and hybrid defense approach, dubbed Isomeron, that combines code randomization with execution-path randomization to mitigate conventional ROP and JIT-ROP attacks. Our reference implementation of Isomeron neither requires source code nor a static analysis phase. We evaluated its efficiency based on SPEC benchmarks and discuss its effectiveness against various kinds of code reuse attacks.

186 citations

Journal ArticleDOI
TL;DR: In this paper, the authors developed a method to decompose functions with mean value zero that are defined on a (possibly unbounded) John domain into a countable sum of functions with zero and support in cubes or balls.
Abstract: We develop a method to decompose functions with mean value zero that are defined on a (possibly unbounded) John domain into a countable sum of functions with mean value zero and support in cubes or balls. This method enables us to generalize results known for simple domains to the class of John domains and domains satisfying a certain chain condition. As applications we present the solvability of the divergence equation divu = f, the negative norm theorem, Korn's inequality, Poincare's inequality and a localized version of the Feerman-Stein inequality. We present the results for weighted Lebesgue spaces and Orlicz spaces.

186 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the uncertainties in r-process decay, describe the physical processes by which the energy of the decay products is absorbed in the ejecta, and present time-dependent thermalization efficiencies for each particle type.
Abstract: One of the most promising electromagnetic signatures of compact object mergers are kilonovae: approximately isotropic radioactively-powered transients that peak days to weeks post-merger. Key uncertainties in modeling kilonovae include the emission profiles of the radioactive decay products---non-thermal beta- and alpha-particles, fission fragments, and gamma-rays---and the efficiency with which they deposit their energy in the ejecta. The total radioactive energy and the efficiency of its thermalization sets the luminosity budget and is therefore necessary for predicting kilonova light curves. We outline the uncertainties in r-process decay, describe the physical processes by which the energy of the decay products is absorbed in the ejecta, and present time-dependent thermalization efficiencies for each particle type. We determine the net heating efficiency and explore its dependence on r-process yields---in particular, the production of translead nuclei that undergo alpha-decay---and on the ejecta's mass, velocity, composition, and magnetic field configuration. We incorporate our results into new time-dependent, multi-wavelength radiation transport simulations, and calculate updated predictions of kilonova light curves. Thermalization has a substantial effect on kilonova photometry, reducing the luminosity by a factor of roughly 2 at peak, and by an order of magnitude or more at later times (15 days or more after explosion). We present simple analytic fits to time-dependent net thermalization efficiencies, which can easily be used to improve light curve models. We briefly revisit the putative kilonova that accompanied gamma ray burst 130603B, and offer new estimates of the mass ejected in that event. We find that later-time kilonova light curves can be significantly impacted by alpha-decay from translead isotopes; data at these times may therefore be diagnostic of ejecta abundances.

186 citations


Authors

Showing all 17627 results

NameH-indexPapersCitations
Yang Gao1682047146301
Herbert A. Simon157745194597
Stephen Boyd138822151205
Jun Chen136185677368
Harold A. Mooney135450100404
Bernt Schiele13056870032
Sascha Mehlhase12685870601
Yuri S. Kivshar126184579415
Michael Wagner12435154251
Wolf Singer12458072591
Tasawar Hayat116236484041
Edouard Boos11675764488
Martin Knapp106106748518
T. Kuhl10176140812
Peter Braun-Munzinger10052734108
Network Information
Related Institutions (5)
Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

96% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

RWTH Aachen University
96.2K papers, 2.5M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023135
2022624
20212,462
20202,585
20192,609
20182,493